Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Растяжение.doc
Скачиваний:
18
Добавлен:
01.02.2015
Размер:
9.41 Mб
Скачать
    1. Напруження при центральному розтяганні – стисканні

Розглянемо розтягання прямолінійного стержня довільного поперечного перерізу під дією двох рівних по величині та протилежно спрямованих сил (рис. 1.3а). У деякому місці стержня уявно проведемо поперечний переріз, відкинемо одну з частин, дію відкинутої частини на ту, що залишилася, замінимо внутрішнім зусиллям , що з рівняння статичної рівновагивизначиться як(рис. 1.3б). Поздовжня силає рівнодіючою (результуючою) внутрішніх зусиль довільним образом розподілених по точках перерізу, перпендикулярному осі стержня. Інші внутрішні силові фактори дорівнюють нулю. Отже, поздовжня сила, спрямована по осі стержня, є нормальною (перпендикулярною) до перерізу. Так як поздовжня сила є результуючою розподілених внутрішніх зусиль (а це нормальні напруження), то і ці розподілені внутрішні зусилля повинні бути перпендикулярні перерізу. Тобто, при центральному розтяганні (також і при центральному стисканні) у поперечному перерізі виникає тільки нормальне напруження (рис. 1.3.в).

Рис. 1.3. Статичний та геометричний аспекти.

Очевидно, що на елементарну площадку діє елементарна поздовжня сила. Відкіля одержуємо рівняння в інтегральному вигляді:

. (1.1)

Вирішити це рівняння неможливо, тому що невідомий закон розподілу по перерізу напруження .

Щоб описати закон розподілу напружень по поперечному перерізу, звернемося до досліду. Як показують експерименти, при центральному розтяганні – стисканні однакові подовжні відрізкиістержня одержують однакові подовження (рис. 1.3г):. Лінії на бічній поверхні стержня, що представляють сліди поперечних перерізів, рівнобіжні до деформування, залишаються рівнобіжними й у процесі деформування:ab || a1b1 і cd || c1d1.

Це дозволяє вважати, що при центральному розтяганні – стисканні виконується гіпотеза плоских перерізів: переріз плоский та нормальний до осі (поперечний переріз) до деформації залишається плоским та нормальним до осі в процесі деформації, тобто переміщуючись, переріз залишається паралельним (рівнобіжним) самому собі. Якщо представити модель стержня, що складається з окремих подовжніх волокон, то при розтяганні кожне волокно подовжується на одну і ту ж величину. Отже, у кожному подовжньому волокні діє однакове зусилля. Цей висновок дозволяє вважати, що при центральному розтяганні-стисканні нормальне напруження по поперечному перерізу розподіляється рівномірно, тобто.

Тоді з рівняння (1.1) маємо: , відкіля нормальненапруження для всіх точок перерізу при центральному розтяганні – стисканні буде однаковим, і визначиться формулою:

. (1.2)

У розглянутому випадку напруження залишаютьсяпостійними як по перерізу, так і по довжині (якщо повздовжня сила та площа поперечного перерізу постійні), тобто по всьому обсягу стержня. Такий напружений стан називається однорідним.

Максимальні розрахункові нормальні напруження, обчислені за формулою (1.2), повинні зіставлятися з гранично допустимими напруженнями для матеріалу стержня, що забезпечують безпечну експлуатацію. Ці напруження називаються допустимими напруженнями .

Сформулюємо умову міцності при центральному розтяганні – стисканні, яка повинна виконуватись в кожній точці поперечних перерізів даного стержня:

. (1.3)

Для матеріалів, що мають неоднакові характеристики при розтяганні та стисканні, умова міцності (1.3) приймає вигляд:

(1.4)

де та– найбільші нормальні напруження при розтяганні та стисканні відповідно.

Переріз стержня, у якому виникає найбільше нормальне напруження є небезпечним.

Напруження, що допускається (допустиме напруження) , визначається як небезпечне напруження для даного матеріалу , поділене на нормативний коефіцієнт запасу, тобто.

Докладніше про небезпечні напруження для матеріалу див. тему курсу "Опір матеріалів" "Механічні характеристики матеріалів".

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]