- •1.Синхронный и асинхронный способы передачи информации по шинам последовательных и параллельных интерфейсов.
- •Проблемы объединения нескольких компьютеров
- •Ethernet - пример стандартного решения сетевых проблем
- •3.Классификационные признаки интерфейсов ввода-вывода.
- •4.Процедуры адресации и идентификации в различных интерфейсах ввода-вывода.
- •5.Программно-управляемый обмен данными в магистрали isa8.
- •6.Программно-управляемый обмен данными в магистрали isa16.
- •7.Прерывание в магистрали isa.
- •8.Характеристики и основные процедуры интерфейсов pci и pci-express. Интерфейс pci
- •9. Интерфейс rs-232c.
- •10. Интерфейсы rs-485, rs-422, rs423. Интерфейсы rs-485, rs-422
- •Принципы построения Дифференциальная передача сигнала
- •"Третье" состояние выходов
- •Четырехпроводной интерфейс
- •Режим приема эха
- •Заземление, гальваническая изоляция и защита от молнии
- •Стандартные параметры
- •Согласование линии с передатчиком и приемником
- •Топология сети на основе интерфейса rs-485
- •Устранение состояния неопределенности линии
- •Сквозные токи
- •Выбор кабеля
- •Расширение предельных возможностей
- •11. Последовательный интерфейс spi
- •12. Интерфейс i2c.
- •1 Описание интерфейса i2c
- •2 Практические рекомендации
- •13. Основные характеристики и процедуры интерфейса usb2, особенности интерфейса usb3.
- •Основные сведения
- •Технические характеристики Возможности usb:
- •Распайка разъема usb 1.1 и 2.0
- •Недостатки usb 2.0
- •14 Интерфейс vme.
- •15 Интерфейс can. Can интерфейс (Control Area Network)
- •2. Основные характеристики протокола
- •7. Кодирование битового потока
- •16. Структура и назначение элементов системы ввода-вывода аналоговой информации.
- •17. Ацп непосредственного считывания. Конвейерные ацп.
- •Конвейерный ацп
- •18. Поразрядные ацп. Проектирование ацп поразрядного кодирования
- •5.1. Принцип действия
- •19. Ацп с промежуточным преобразованием во временной интервал.
- •20. Сигма-дельта ацп. Сигма-дельта ацп
- •21. Цифроаналоговые преобразователи. Основные структуры и характеристики. Основные понятия и общие способы реализации
18. Поразрядные ацп. Проектирование ацп поразрядного кодирования
5.1. Принцип действия
Работа этих преобразователей основана на последовательном (поразрядном) сравнении входной величины с образцовыми мерами, значения которых построены по двоичному (или двоично-десятичному) коду.
Структурная схема АЦП поразрядного кодирования показана на рис. 5.1. По сигналу «Пуск» устройство управления (УУ) включает первый (по порядку) разряд цифро-аналогового преобразователя, представляющего собой преобразователь кода в напряжение (ПКН). Если ПКН построен по двоичной системе, то «вес» включенного первым разряда составляет примерно половину максимального значения входного сигнала. В сравнивающем устройстве (СУ) образуется разность
где — шаг квантования или единица младшего разряда;
— число двоичных разрядов в АЦП;
— кодовый коэффициент, равный 0 или 1.
В зависимости от знака разности по сигналу от СУ устройство управления оставляет включенным в ПКН этот разряд или отключает его. Иначе, при , при .
На следующем шаге включается разряд с «весом», в два раза меньшим первого, и вновь образуется разность
В зависимости от знака вновь включенный разряд оставляется включенным () или отключается (). Так включаются (опрашиваются) все разряды вплоть до самого младшего. Весь цикл преобразования заканчивается за тактов (шагов). В соответствии с состоянием ключей (ячеек регистра) на выходе АЦП образуется код X, эквивалентный значению входного сигнала :
Статическая погрешность АЦП определяется в основном погрешностью используемого в нем ЦАП и может быть сделана достаточно малой, благодаря чему эти АЦП могут строиться на 12—14 разрядов.
Быстродействие преобразователя зависит от числа двоичных разрядов и инерционности используемых в нем элементов и может доходить до 105— 106преобразований в секунду [4]. Таким образом, АЦП поразрядного кодирования являются компромиссными по быстродействию и точности. В связи с этим они получили широкое распространение в системах сбора информации среднего быстродействия и в цифровых измерительных приборах.
19. Ацп с промежуточным преобразованием во временной интервал.
К АЦП без промежуточного преобразования можно отнести преобразователи напряжение-частота. Частота повторения выходных импульсов таких преобразователей пропорциональна значению входного сигнала. Среди АЦП с промежуточным преобразованием чаще других используются преобразователи во временной интервал и частоту. В первом случае происходит последовательное преобразование входного сигнала во временной интервал и временного интервала в цифровой код. Во втором случае осуществляется последовательное преобразование входного сигнала в импульсы соответствующей частоты от генератора плавающей частоты, которые затем подсчитываются счетчиком за определенный интервал времени. Число зафиксированных им пульсов пропорционально входному сигналу.
Распространение получили интегрирующие АЦП с двухтактным интегрированием и с дискретной обратной связью. В преобразователях с двухтактным интегрированием выделяют АЦП с интегрированием входного сигнала за постоянный интервал времени и с интегрированием входного сигнала до заданной величины. Принцип их действий сводится к следующему: в первом такте интегрируется входной сигнал, во втором – противоположный ему по знаку опорный сигнал. Окончание первого такта интегрирования является началом второго. В течение выбранного такта интегрирования ведётся счет импульсов, который прекращается в момент равенства нулю сигнала на выходе интегратора. Число зафиксированных счетчиком импульсов пропорционально входному сигналу АЦП [1].