Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1. Математика Тумашев В.И..docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
2.36 Mб
Скачать

Экономический смысл производной

Рассмотрим понятия, иллюстрирующие экономический смысл производной.

Пусть y(x) -функция, характеризующая, например, издержки производства, где x - количество выпускаемой продукции. Тогда отношение y(x)/x описывает средние издержки, приходящиеся на одно изделие. Средняя величина обозначается Ay или Af (от английского "average".) Среднее приращение, средний прирост, средняя скорость изменения определяется отношением ∆ y/ x. Производная

выражает предельные (маргинальные от английского "marginal") издержки производства. Величину Mf(x) = y' называют мгновенным приростом или мгновенной скоростью изменения y. Аналогично можно определить предельную выручку, предельный доход, предельную полезность и другие предельные величины.

Определение 5. Отношение называется темпом прироста функции y. Отношение называется мгновенным темпом прироста.

Обычно степень влияния одной переменной на другую, зависимую от нее, измеряют производной данной функции. Однако часто экономистов интересуют относительные изменения величин. Например, если маленькое яблоко подорожало на 2,5 рубля, то при этом большое, скажем, на 5. В тоже время, если яблоки подорожали в 1,5 раза, то в 1,5 раза дороже стало и маленькое, и большое яблоко, и килограмм, и вагон яблок. Поэтому для анализа относительных изменений вместе с понятием производной используют понятие эластичности.

Определение 6 (эластичность). Эластичностью функции Ex(y) называется величина

Ex(y) = lim x→ 0 (∆ y/y: x/x) = x/y lim x→ 0 y/ x = x/y· y'.

Определение 7. Будем говорить, что y(x) эластична в точке x, если |Ex(y)|>1, y(x) неэластична, если |Ex(y)| <1, и нейтральна, если |Ex(y)| = 1.

Рассмотрим некоторые свойства эластичности.

  1. Эластичность - безразмерная величина, ее значение не зависит от того, в каких единицах измерены аргумент и функция. Если u = Ax, v = By, то Eu(v) = (dv/du)· u/v=(B/A)· (dy/dx)· (Ax/By) = Ex(y);

  2. Эластичности взаимно обратных функций - взаимно обратные величины

Ey(x) = (dx/dy)·(y/x) = 1/Ex(y).

  1. Эластичность функции равна произведению независимой переменной x на темп изменения функции Ty = (ln y)' = y'/y, то есть

Ex(y) = xTy.

  1. Эластичность произведения (частного) двух функций равна сумме (разности) эластичностей этих функций:

Ex(uv) = Ex(u)+Ex(v), Ex(u/v) = Ex(u)-Ex(v).

  1. Из последнего свойства следуют формулы

Ex(xy) = Ex(x)+Ex(y) = 1+Ex(y)

отсюда, если Ex(y)>-1, то xy монотонно возрастает; если Ex(y)<-1, то xy монотонно убывает. Аналогично,

Ex(y/x) = Ex(y)-Ex(x) = Ex(y)-1

Пример 3. Как связаны предельные и средние полные затраты предприятия, если эластичность полных затрат равна 1?

Решение. Пусть затраты выражены функцией y(x), где x - объем выпускаемой продукции. Тогда средние затраты равны y/x. Найдем эластичность отношения

Ex(y/x) = Ex(y)-Ex(x) = Ex(y)-1.

Но по условию Ex(y) = 1, поэтому Ex(y/x) = 0. Это означает, что с изменением объема продукции x средние затраты на единицу продукции не меняются, т.е. y/x = c, y = cx. Предельные издержки равны y' = c. Следовательно, предельные издержки совпадают со средними.

В анализе ценовой политики используется понятие эластичности спроса. Пусть d=d(p) функция спроса от цены товара p. Тогда эластичность определяется по формуле

Для функции предложения s(p) аналогично вводится понятие эластичности

Отметим, что с увеличением цены объем спроса уменьшается. Поэтому функция спроса d(p) убывает, а функция предложения s(p) возрастает с ростом p. Следовательно, d'(p)<0, Ep(d)<0 и Ep(s)>0.

Отметим три вида спроса:

  1. если Ep(d)<-1, то спрос считается эластичным;

  2. если Ep(d)>-1, то спрос неэластичен;

  3. если Ep(d) = -1, то спрос нейтрален.

Пример 4. Пусть известны функции спроса d=7-p и функция предложения s=p+1, где p - цена. Нужно найти равновесную цену и эластичности спроса и предложения.

Решение. Равновесная цена определяется из условия d=s, поэтому 7-p=p+1, откуда p=3. Найдем эластичность спроса и предложения

Ep(d) = p/(p-7), Ep(s) = p/(p+1).

Для равновесной цены p=3 получим Ep(d) = -0,75, Ep(s) = 0,75. Для значения p = 3 спрос является неэластичным, также как и функция предложения.

Дифференцируемость функции

Определение 1 (дифференцируемость в точке). Функция f(x) называется дифференцируемой в точке x, если приращение ∆ y этой функции в точке x представимо в виде

y =A x +ά(∆ x) ∆x,

(1)

где A - некоторое число, не зависящее от ∆ x, а lim∆ x→ 0 ά (∆x ) = 0.

В дальнейшем будем считать, что ά (0) = 0. В этом случае функция a(x) будет непрерывной в точке ∆ x = 0. Равенство 1 можно переписать иначе, так как функции ά (∆x), ∆x - бесконечно малые в точке ∆x = 0 и их произведение тоже бесконечно малая функция, поэтому

y =A x +o(∆ x).

(2)

Справедлива теорема

Теорема 1. Для того чтобы функция была дифференцируема в точке x, необходимо и достаточно, чтобы она имела в этой точке конечную производную.

Доказательство. Необходимость. Пусть функция дифференцируема, тогда ее приращение представимо в виде (1). Поделив (1) на ∆ x≠ 0 получим

y/ x = A+ά(∆ x).

Переходя к пределу в последнем выражении при ∆ x→ 0, получим, что A=f'(x).

Достаточность. Пусть существует конечная производная f'(x), то есть существует конечный предел

lim∆ x→ 0 y/ x = f'(x).

Обозначим a(∆ x) = ∆ y/ ∆ x-f'(x). Отсюда вытекает представление (1).

Пример 1. Доказать, что функция |x| не дифференцируема в точке x = 0.

Решение. Найдем приращение функции в точке x = 0 :

y = | x|

Поэтому

lim∆ x→ -0 y/ x = -1, lim∆ x→+ 0 y/ x = 1,

следовательно, функция |x| в точке x = 0 не дифференцируема.

Следующая теорема выражает связь между непрерывностью и дифференцируемостью.

Теорема 2 (дифференцируемость и непрерывность). Если функция дифференцируема в точке x, то она непрерывна в этой точке.

Доказательство. Так как функция дифференцируема в точке x, то то ее приращение представимо в виде (1), из которого следует, что lim∆ x→ 0 ∆ y = 0, что означает непрерывность функции в данной точке.

Заметим, что из непрерывности в данной точке не следует дифференцируемость в этой точке. Это видно из рассмотренного выше примера 1.

Производная непрерывной функции не обязательно непрерывна. Если функция имеет непрерывную производную на некотором множестве X, то функция называется гладкой на этом множестве. Если производная допускает конечное число точек разрыва (причем первого рода), то такая функция называется кусочно гладкой.