- •1.Биология как наука о закономерностях и механизмах жизнедеятельности и развития организмов , её задачи. Объект и методы исследования
- •2. Дайте определение жизни. Охарактеризуйте свойства живого. Назовите формы жизни.
- •3. Эволюционно-обусловленные уровни организации биологических систем.
- •4. Обмен веществ. Ассимиляция у гетеротрофов и ее фазы.
- •5. Обмен веществ. Диссимиляция. Этапы диссимиляции в гетеротрофной клетке. Внутриклеточный поток: информации, энергии и вещества.
- •6. Окислительное фосфорилирование (оф). Разобщение оф и его медицинское значение. Лихорадка и гипертермия. Сходства и различия.
- •9. Основные положения клеточной теории Шлейдена и Шванна. Какие дополнения внес в эту теорию Вирхов? Современное состояние клеточной теории.
- •10. Химический состав клетки
- •11. Типы клеточной организации. Строение про- и эукариотических клеток. Организация наследственного материала у про- и эукариот.
- •12. Сходство и различие растительной и животной клетки. Органоиды специального и общего назначения.
- •13. Биологические мембраны клетки. Их свойства, строение и функции.
- •14. Механизмы транспорта вещества через биологические мембраны. Экзоцитоз и Эндоцитоз. Осмос. Тургор. Плазмолиз и деплазмолиз.
- •15. Физико-химические свойства гиалоплазмы. Ее значение в жизнедеятельности клетки.
- •16. Что такое органеллы? Какова их роль в клетке? Классификация органелл.
- •17. Мембранные органеллы. Митохондрии, их структура и функции.
- •18. Комплекс Гольджи, его строение и функции. Лизосомы. Их строение и функции. Типы лизосом.
- •19. Эпс, ее разновидности, роль в процессах синтеза веществ.
- •20. Немембранные органеллы. Рибосомы, их структура и функции. Полисомы.
- •21. Цитоскелет клетки, его строение и функции. Микроворсинки, реснички, жгутики.
- •22. Ядро. Его значение в жизнедеятельности клетки. Основные компоненты и их структурно функциональная характеристика. Эухроматин и гетерохроматин.
- •23. Ядрышко, его строение и функции. Ядрышковый организатор.
- •24. Что такое пластиды? Какова их роль в клетке? Классификация пластид.
- •25. Что такое включения? Какова их роль в клетке? Классификация включений.
- •26. Происхождение эук. Клетки. Эндосимбиотическая теория происхождения ряда органоидов клетки.
- •27. Строение и функции хромосом.
- •28. Принципы классификации хромосом. Денверская и Парижская классификации хромосом, их сущность.
- •29. Цитологические методы исследования. Световая и электронная микроскопия. Постоянные и временные препараты биологических объектов.
- •39. Гидравлическое сопротивление сосудов. Гидравлическое сопротивление разветвлённых участков.
- •56. Закон Вебера – Фехнера. Шкала громкости. Единицы измерения громкости.
- •64. Электропроводность биологических тканей. Физические основы реографии. Импеданс биологических тканей.(Губанов: с.217-230)
- •64. Электропроводность биологических тканей. Физические основы реографии. Импеданс биологических тканей.(Губанов: с.217-230)
- •74. Электродиффузия. Уравнение Нернста – Планка.
- •75. Активный транспорт веществ через мембрану. Понятие о натрий – калиевом насосе.
- •77. Уравнение Гольдмана – Ходжкина – Хаксли.
- •88. Дифракция света. Принцип Гюйгенса – Френеля.
- •Тема 4.1. Общая характеристика мембран.
- •1. Липиды мембран.
- •2. Белки мембран.
- •Тема 4.2. Транспорт веществ через мембраны
- •3. Перенос макромолекул и частиц с участием мембран - эндоцитоз и экзоцитоз.
- •Тема 4.3. Трансмембранная передача сигналов
- •Участие аденилатциклазной системы в регуляции экспрессии генов.
- •5. Каталитические рецепторы.
- •2. Выберите правильные ответы.
- •3. Установите соответствие:
- •4. Перенесите табл. 4.2. В тетрадь и заполните ее.
- •6. Выполните «цепное» задание:
- •1. Ознакомьтесь с рис. 4.19 и выполните следующие задания:
- •1. Мембраны биологические
- •2. Химический состав и строение биологических мембран
- •3. Свойства (функции) биологических мембран
- •3.3 Способность генерировать биоэлектрические потенциалы и проводить возбуждение
- •3.6 Клеточная рецепция и межклеточные взаимодействия
- •4. Нарушения структуры и функции биологических мембран
- •1. Эволюция представлений о строении мембран
- •3. Биологические функции мембран
- •4. Состав биологических мембран
- •4.1. Мембранные липиды 4.1.1. Фосфолипиды, гликолипиды, стероиды
- •4.1.3. Жирные кислоты и их пространственная конфигурация
- •4.2.2. Трансмембранная асимметрия липидов
Участие аденилатциклазной системы в регуляции экспрессии генов.
Многие белковые гормоны: глюкагон, вазопрессин, паратгормон и др., передающие свой сигнал посредством аденилатциклазной системы, могут не только вызвать изменение скорости реакций путем фосфорилирования уже имеющихся в клетке ферментов, но и увеличивать или уменьшать их количество, регулируя экспрессию генов (рис. 4.12). Активная протеинкиназа А может проходить в ядро и фосфорилировать фактор транскрипции (СRЕВ). Присоединение фосфорного
|
Рис.
4.12. Аденилатциклазный путь, приводящий
к экспрессии специфических генов
остатка повышает сродство фактора транскрипции (СRЕВ-(Р) к специфиче-ской последовательности регуляторной зоны ДНК-СRЕ (цАМФ-response element) и стимулирует экспрессию генов определенных белков.
Синтезированные белки могут быть ферментами, увеличение количества которых повышает скорость реакций метаболических процессов, или мембранными переносчиками, обеспечивающими поступление или выход из клетки определенных ионов, воды или других веществ.
Рис.
4.13. Инозитолфосфатная система
Работу системы обеспечивают белки: кальмодулин, фермент протеинкиназа С, Са2+-кальмодулин-зависимые протеинкиназы, регулируемые Са2+-каналы мембраны эндоплазматического ретикулума, Са2+-АТФазы клеточной и митохондриальной мембран.
Последовательность событий передачи сигнала первичных мессенджеров с помощью инозитолфосфатной системы
Связывание активатора инозитолфосфатной системы с рецептором (R) приводит к изменению его конформации. Повышается сродство рецептора к Gфлс-белку. Присоединение комплекса первичный мессенджер-рецептор к Gфлс-ГДФ снижает сродство афлс-субъединицы к ГДФ и увеличивает сродство к ГТФ. В активном центре афлс-субъединицы ГДФ замещается на ГТФ. Это вызывает изменение конформации субъединицы афлс и снижение сродства к субъединицам βγ, происходит диссоциация Gфлс-белка. Отделившаяся субъединица афлс-ГТФ латерально перемещается по мембране к ферменту фосфолипазе С. Взаимодействие афлс-ГТФ с центром связывания фосфолипазы С изменяет конформацию и активность фермента, возрастает скорость гидролиза фосфолипида клеточной мембраны - фосфатидилинозитол-4,5-бисфосфа- та (ФИФ2) (рис. 4.14).
Рис.
4.14. Гидролиз фосфатидилинозитол-4,5-бисфосфата
(ФИФ2)
|
В ходе реакции образуются два продукта - вторичные вестники гормонального сигнала (вторичные мессенджеры): диацилглицерол, который остается в мембране и участвует в активации фермента протеинкиназы С, и инозитол-1,4,5-трифосфат (ИФ3), который, будучи гидрофильным соединением, уходит в цитозоль. Таким образом, сигнал, принятый рецептором клетки, раздваивается. ИФ3 связывается специфическими центрами Са2+- канала мембраны эндоплазматического ретикулума (Э)), что приводит к изменению конформации белка и открытию Са2+-канала. Так как концентрация кальция в ЭР примерно на 3-4 порядка выше, чем в цитозоле, после открытия канала Са2+ по градиенту концентрации поступает в цитозоль. В отсутствие ИФ3 в цитозоле канал закрыт. В цитозоле всех клеток содержится небольшой белок кальмодулин, имеющий четыре центра связывания Са2+. При повышении концентрации кальция он активно присоединяется к кальмодулину, образуя комплекс 4Са2+-кальмодулин. Этот комплекс взаимодействует с Са2+-кальмодулинзависимыми протеинкиназами, другими ферментами и повышает их активность. Активированная Са2+-кальмодулин-зависимая протеинкиназа фосфорилирует определенные белки и ферменты, в результате чего изменяется их активность и скорость метаболических процессов, в которых они участвуют. Повышение концентрации Са2+ в цитозоле клетки увеличивает скорость взаимодействия Са2+ с неактивным цитозольным ферментом протеинкиназой С (ПКС). Связывание ПКС с ионами кальция стимулирует перемещение белка к плазматической мембране и позволяет ферменту вступать во взаимодействие с отрицательно заряженными «головками» молекул фосфатидилсерина (ФС) мембраны. Диацилглицерол, занимая специфические центры в протеинкиназе С, в еще большей степени увеличивает ее сродство к ионам кальция. На внутренней стороне мембраны образуется активная форма ПКС (ПКС ? Са2+ ? ФС ? ДАГ), которая фосфорилирует специфические ферменты.
|
Включение ИФ-системы непродолжительно, и после ответа клетки на стимул происходит инактивация фосфолипазы С, протеинкиназы С и Са2+-кальмодулин-зависимых ферментов. афлс-Субъединица в комплексе с ГТФ и фосфолипазой С проявляет ферментативную (ГТФ-фосфатазную) активность, она гидролизует ГТФ. Связанная с ГДФ афлс-субъединица теряет сродство к фосфолипазе С и возвращается в исходное неактивное состояние, т.е. включается в комплекс αβγ-ГДФ Gфлс-белок). Отделение афлс-ГДФ от фосфолипазы С инактивирует фермент и гидролиз ФИФ2 прекращается. Повышение концентрации Са2+ в цитозоле активирует работу Са2+-АТФаз эндоплазматического ретикулума, цитоплазматической мембраны, которые «выкачивают» Са2+ из цитозоля клетки. В этом процессе принимают участие также Na+/Са2+- и Н+/Са2+-переносчики, функционирующие по принципу активного антипорта. Снижение концентрации Са2+ приводит к диссоциации и инактивации Са2+-кальмодулинзависимых ферментов, а также потере сродства протеинкиназы С к липидам мембраны и снижению ее активности. ИФ3 и ДАГ, образовавшиеся в результате активации системы, могут снова взаимодействовать друг с другом и превращаться в фосфатидилинозитол- 4,5-бисфосфат. Фосфорилированные ферменты и белки под действием фосфопротеинфосфатазы переходят в дефосфорилированную форму, изменяется их конформация и активность.
