- •1.Биология как наука о закономерностях и механизмах жизнедеятельности и развития организмов , её задачи. Объект и методы исследования
- •2. Дайте определение жизни. Охарактеризуйте свойства живого. Назовите формы жизни.
- •3. Эволюционно-обусловленные уровни организации биологических систем.
- •4. Обмен веществ. Ассимиляция у гетеротрофов и ее фазы.
- •5. Обмен веществ. Диссимиляция. Этапы диссимиляции в гетеротрофной клетке. Внутриклеточный поток: информации, энергии и вещества.
- •6. Окислительное фосфорилирование (оф). Разобщение оф и его медицинское значение. Лихорадка и гипертермия. Сходства и различия.
- •9. Основные положения клеточной теории Шлейдена и Шванна. Какие дополнения внес в эту теорию Вирхов? Современное состояние клеточной теории.
- •10. Химический состав клетки
- •11. Типы клеточной организации. Строение про- и эукариотических клеток. Организация наследственного материала у про- и эукариот.
- •12. Сходство и различие растительной и животной клетки. Органоиды специального и общего назначения.
- •13. Биологические мембраны клетки. Их свойства, строение и функции.
- •14. Механизмы транспорта вещества через биологические мембраны. Экзоцитоз и Эндоцитоз. Осмос. Тургор. Плазмолиз и деплазмолиз.
- •15. Физико-химические свойства гиалоплазмы. Ее значение в жизнедеятельности клетки.
- •16. Что такое органеллы? Какова их роль в клетке? Классификация органелл.
- •17. Мембранные органеллы. Митохондрии, их структура и функции.
- •18. Комплекс Гольджи, его строение и функции. Лизосомы. Их строение и функции. Типы лизосом.
- •19. Эпс, ее разновидности, роль в процессах синтеза веществ.
- •20. Немембранные органеллы. Рибосомы, их структура и функции. Полисомы.
- •21. Цитоскелет клетки, его строение и функции. Микроворсинки, реснички, жгутики.
- •22. Ядро. Его значение в жизнедеятельности клетки. Основные компоненты и их структурно функциональная характеристика. Эухроматин и гетерохроматин.
- •23. Ядрышко, его строение и функции. Ядрышковый организатор.
- •24. Что такое пластиды? Какова их роль в клетке? Классификация пластид.
- •25. Что такое включения? Какова их роль в клетке? Классификация включений.
- •26. Происхождение эук. Клетки. Эндосимбиотическая теория происхождения ряда органоидов клетки.
- •27. Строение и функции хромосом.
- •28. Принципы классификации хромосом. Денверская и Парижская классификации хромосом, их сущность.
- •29. Цитологические методы исследования. Световая и электронная микроскопия. Постоянные и временные препараты биологических объектов.
- •39. Гидравлическое сопротивление сосудов. Гидравлическое сопротивление разветвлённых участков.
- •56. Закон Вебера – Фехнера. Шкала громкости. Единицы измерения громкости.
- •64. Электропроводность биологических тканей. Физические основы реографии. Импеданс биологических тканей.(Губанов: с.217-230)
- •64. Электропроводность биологических тканей. Физические основы реографии. Импеданс биологических тканей.(Губанов: с.217-230)
- •74. Электродиффузия. Уравнение Нернста – Планка.
- •75. Активный транспорт веществ через мембрану. Понятие о натрий – калиевом насосе.
- •77. Уравнение Гольдмана – Ходжкина – Хаксли.
- •88. Дифракция света. Принцип Гюйгенса – Френеля.
- •Тема 4.1. Общая характеристика мембран.
- •1. Липиды мембран.
- •2. Белки мембран.
- •Тема 4.2. Транспорт веществ через мембраны
- •3. Перенос макромолекул и частиц с участием мембран - эндоцитоз и экзоцитоз.
- •Тема 4.3. Трансмембранная передача сигналов
- •Участие аденилатциклазной системы в регуляции экспрессии генов.
- •5. Каталитические рецепторы.
- •2. Выберите правильные ответы.
- •3. Установите соответствие:
- •4. Перенесите табл. 4.2. В тетрадь и заполните ее.
- •6. Выполните «цепное» задание:
- •1. Ознакомьтесь с рис. 4.19 и выполните следующие задания:
- •1. Мембраны биологические
- •2. Химический состав и строение биологических мембран
- •3. Свойства (функции) биологических мембран
- •3.3 Способность генерировать биоэлектрические потенциалы и проводить возбуждение
- •3.6 Клеточная рецепция и межклеточные взаимодействия
- •4. Нарушения структуры и функции биологических мембран
- •1. Эволюция представлений о строении мембран
- •3. Биологические функции мембран
- •4. Состав биологических мембран
- •4.1. Мембранные липиды 4.1.1. Фосфолипиды, гликолипиды, стероиды
- •4.1.3. Жирные кислоты и их пространственная конфигурация
- •4.2.2. Трансмембранная асимметрия липидов
74. Электродиффузия. Уравнение Нернста – Планка.
Поскольку в диффузии участвуют не только нейтральные вещества, но и ионы разной полярности, Нернст и Планк предложили формулу:
Ф = -uRT (dc/dx) - cuz F (dj/dx)
где: u = D/RT (называется подвижностью молекул)
R - универсальная газовая постоянная;
T - абсолютная температура;
с - концентрация вещества;
z - валентность;
F - число Фарадея;
(dc/dx), (dj/dx) - градиент концентрации и градиент потенциала (то же, что электрическая напряжённость).
Это уравнение выведено из уравнения Теорелла: Ф = -cu (dm/dx), где m - электрохимический потенциал.
75. Активный транспорт веществ через мембрану. Понятие о натрий – калиевом насосе.
Активный транспорт (в отличие от пассивного - осуществляется против градиента концентрации проходящих веществ, т.е. в сторону больших их концентраций). Следующая особенность - транспортируются вещества только за счёт расхода свободной энергии. В клетках ионный баланс (Na+, K+) обеспечивается белковыми структурами, которые носят название “калий-натриевый насос”. Транспорт Na+ и K+ осуществляется за счёт гидролиза АТФ, превращения её в АДФ + свободный фосфат, с обязательным участием ферментов Na+, K+ -АТФ-аз. Перенос является сопряжённым, т.е. осуществляется синхронно: на переход 3 из клетки во вне необходимо наличие 2 во внеклеточной жидкости для её транспорта в клетку. Активный транспорт веществ через биологические мембраны имеет огромное значение. За счет активного транспорта в организме создаются градиенты концентраций, электрических потенциалов, давления и т.д. С точки зрения термодинамики активный транспорт удерживает организм в неравновесном состоянии, поддерживает жизнь.
https://studopedia.ru/3_176526_prostaya-i-oblegchennaya-diffuziya.html
Диффузионные, мембранные и фазовые потенциалы
БИОФИЗИЧЕСКИЕ ПРЕДПОСЫЛКИ ВОЗНИКНОВЕНИЯ БИОПОТЕНЦИАЛОВ.
БИОПОТЕНЦИАЛЫ.
Измерение биопотенциалов является объективным, универсальным точным показателем течения физиологических функций различных органов. Все процессы жизнедеятельности органов сопровождаются появлением в клетках и тканях электродвижущих сил. Электрические явления играют большую роль в важнейших физиологических процессах: возбуждении клеток и проведении возбуждения по клеткам. Благодаря непосредственной связи биопотенциалов ( БП ) с метаболическими процессами и физиологическим состоянием клеток они являются чувствительным и точно измеримым показателем различных изменений в клетках в норме и при патологии. Для более эффективного использования измерения БП в медицине необходимо выяснение механизмов их возникновения.
Для возникновения БП решающее значение имеют потенциалы, обусловленные несимметричным, неравномерным распределением ионов. К таким потенциалам могут быть отнесены: диффузионные, мембранные и фазовые.
Диффузионные потенциалы возникают на границе раздела двух жидких сред в результате различной подвижности ионов. Диффузионная разность потенциалов может быть найдена из уравненияГендерсона:Е = [ (U - V) RT ln ( a1/a2 ) ] / ( U + V ) ZF,
где U - подвижность катиона; V - подвижность аниона; R - газовая постоянная; T - абсолютная температура; Z - валентность ионов; F - число Фарадея; a1 - активность ионов в области, откуда идет диффузия; a2 - активность ионов в области, куда идет дифффузия. Под активностью ионов понимают их активную концентрацию. Активность ионов всегда меньше их абсолютной концентрации, что обусловлено взаимодействием ионов друг с другом, а также их взаимодействием с электрически заряженными группами других молекул. Активность выражается произведением коэффициента активности f, определяемым эмпирически, на абсолютную концентрацию С ионов: a = f C. Частным случаем диффузионного потенциала является мембранный потенциал. Он возникает при наличии пористой перегородки ( в клетке - мембрана ), которая избирательно пропускает катионы и анионы, например, пропускающей только катионы. Это приводит к возникновению разности потенциалов, которую можно найти из формулы:
E = (RT / ZF ) ln (a1/ a2 ) - она называется уравнением Нернста. Если перейти от натуральных логарифмов к десятичным и подставить значения постоянных, то при 20° С получим: E = 58 lg ( a1 / a2 ) ] / Z [mB] - это уравнение обычно используют при практическом расчете мембранных потенциалов. В соответствии с современными представлениями потенциалы покоя, повреждения и действия являются по своей природе мембранными потенциалами. Фазовые потенциалы возникают на границе раздела двух несмешивающихся фаз ( например, раствор электролита в воде и какое-либо масло ) в результате различной растворимости катионов и анионов в неводной фазе. Величину фазовых потенциалов можно определить из уравнения Гендерсона.
https://studopedia.ru/3_176527_diffuzionnie-membrannie-i-fazovie-potentsiali.html
Потенциал покоя. Природа потенциала покоя
Между внутренней и наружной поверхностями клеточной мембраны всегда существует разность электрических потенциалов. Разность потенциалов, измеренная между внутренней и наружной поверхностями клеточной мембраны в состоянии физиологического покоя клетки, называется потенциалом покоя. Потенциал покоя клетки можно измерить с помощью стеклянного микроэлектрода, введенного непосредственно в цитоплазму; второй электрод при этом находится во внеклеточной жидкости. Кончик микроэлектрода, имеющего внутри канал, заполненный концентрированным раствором КС1, может иметь диаметр всего в долю микрона. При введении микроэлектрода мембрана клетки охватывает его кончик и ее повреждения практически не происходит На основании большого экспериментального материала было установлено, что цитоплазма в состоянии покоя клеток всегда имеет отрицательный потенциал по отношению к потенциалу межклеточной жидкости. Потенциал покоя у разных клеток имеет величину от 50 до 100 мВ. Согласно современным взглядам, потенциал покоя по своей природе является мембранным потенциалом. Наличие мембраны приводит к возникновению потенциалов клеток, как в покое, так и при возбуждении. Причина их возникновения - неравномерное распределение ионов калия и натрия между содержимым клеток и межклеточной средой.Концентрация ионов калия внутри клеток в 20—40 раз превышает их содержание в окружающей клетку жидкости. Напротив, концентрация натрия в межклеточной жидкости в 10—20 раз выше, чем внутри клеток. Такое неравномерное распределение ионов обусловлено активным переносом ионов—работой натрий-калиевого насоса. Как было установлено, возникновение потенциала покоя обусловлено в основном наличием концентрационного градиента ионов калия. Эта точка зрения базируется на том, что ионы калия внутри клетки находятся в свободном состоянии, т. е. не связаны с другими ионами и молекулами и могут свободно диффундировать. Согласно теории Ходжкина, Хаксли, Катца, клеточная мeмбpaнa в cocтoянии покоя проницаема в основном только для ионов калия. Ионы калия диффундируют по концентрационному градиенту через клеточную мембрану в окружающую жидкость; анионы не могут проникать через мембрану и остаются на ее внутренней стороне. Так как ионы калия имеют положительный заряд, а анионы, остающиеся на внутренней поверхности мембраны,—отрицательный, то внешняя, поверхность мембраны при этом заряжается положительно, а внутренняя отрицательно. Понятно, что диффузия продолжается только до того момента, пока не установится равновесие между силами возникающего электрического поля и силами диффузии.
Если принять, что потенциал покоя определяется диффузией только ионов калия из цитоплазмы наружу, то его величина Е может быть найдена из уравнения Нернста:
Е = (RT/ z F)·ln[K.]i / [К.]е (1)
где [K.]i и [К.]е—активность ионов калия внутри и снаружи клетки, z - валентность.
