Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Строение и функции биологических мембран. Транспорт веществ через биологические мембраны.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.85 Mб
Скачать

56. Закон Вебера – Фехнера. Шкала громкости. Единицы измерения громкости.

По закону Вебера-Фехнера ощущение громкости E связано с создающим его физическим раздражителем I логарифмической зависимостью:

где k – некоторый коэффициент пропорциональности, зависящий от частоты и интенсивности; I0 - пороговая интенсивность звука. Т.о., нулевая точка шкалы громкости соответствует 0дБ при 1кГц. Если бы коэффициент k был постоянным, то логарифмическая шкала интенсивностей звука совпадала бы со шкалой громкости. Однако сильная зависимость k от частоты и интенсивности звука не позволяет свести измерение громкости к простому измерению интенсивности звука. Условно считают, что на частоте 1 кГц шкалы громкости и интенсивности звука полностью совпадают. Для отличия шкалы интенсивности звука от шкалы громкости, в шкале громкости децибелы называют фонами – это и есть единица громкости.

https://studopedia.ru/3_176519_harakteristiki-sluhovogo-oshchushcheniya-porogi-slishimosti.html

Ультразвук. Основные свойства и особенности распространения. Действие ультразвука на биологические ткани. Ультразвук в диагностике

Физика слуха.

Звуковая волна, пройдя наружное ухо, наталкивается на барабанную перепонку, приводя её в движение. Барабанная перепонка через систему слуховых косточек передаёт колебания во внутреннее ухо - улитку. Движение жидкости в вестибулярном и базилярном каналах внутреннего уха заставляет колебаться базилярную мембрану, стимулируя рецепторные клетки.

Среднее ухо системой косточек усиливает давление в 17 раз (или на 25дБ).

Внутреннее ухо заполнено жидкостью. Длина развёрнутой улитки 35мм. Благодаря неоднородным механическим свойствам базилярной мембраны, волны разной частоты приводят в движение различные её участки.

Слуховой аппарат очень чувствителен: пороговые колебания барабанной перепонки составляют 10-11м.

Локализация источника звука основана на двух механизмах:

При низких частотах ухо улавливает разность фаз звуковой волны в левом и в правом ухе.

При высоких частотах ухо реагирует на разность интенсивностей звука, достигших левого и правого уха. Вокруг головы образуется звуковая тень и если разница будет в 1дБ то можно локализовать источник звука (с точностью +100).

Ультразвук - механические колебания и волны, частоты которых более 20 кГц. Верхний предел ультразвуковых частот - 109 – 1010 Гц.

Для генерирования ультразвука применяют излучатели, основанные на обратном пьезоэффекте, который заключается в механической деформации тел под действием электрического поля. Для регистрации ультразвука может быть использован прямой пьезоэффект, когда под действием механической деформации тела возникает электрическое поле. Применение ультразвука в медицине связано с его особенностями распространения и характерными свойствами. Отражение ультразвуковых волн (УЗ) на границе двух сред зависит от соотношения их волновых сопротивлений. Так, УЗ хорошо отражается на границах мышца – надкостница – кость, на поверхности полых органов и т.д. Поэтому можно определить расположение и размер неоднородных включений, полостей, внутренних органов и т.п. (УЗ – локация). При УЗ – локации используют как непрерывное, так и импульсное излучения. В первом случае исследуется стоячая волна, возникающая при интерференции падающей и отраженной волн от границы раздела. Во втором случае наблюдается отраженный импульс и измеряют время распространения ультразвука до исследуемого объекта и обратно. Зная скорость распространения ультразвука, определяют глубину залегания объекта.

Волновое сопротивление биологических сред в 3000 раз больше волнового сопротивления воздуха. Поэтому, если УЗ - излучатель приложить к телу человека, то УЗ не проникнет внутрь, а будет отражаться из-за тонкого слоя воздуха между излучателем и биологическим объектом. Чтобы исключить воздушный слой, поверхность УЗ –излучателя покрывают слоем масла.

Скорость распространения УЗ и их поглощение существенно зависят от состояния среды; на этом основано использование ультразвука для изучения молекулярных свойств вещества. Исследования такого рода являются предметом молекулярной акустики. При распространении ультразвука в среде возникают зоны сжатия и разряжения, которые приводят к образованию разрывов жидкости – кавитации. Кавитации существуют недолго и быстро захлопываются, при этом в небольших объемах выделяется значительная энергия, что приводит к разогреванию вещества, а также ионизации и диссоциации молекул.

Применение ультразвука в медицине можно разбить на два основных направления: диагностику и терапию.

К первому направлению относятся локационные методы с использованием главным образом импульсного излучения. Это эхоэнцефалография, ультразвуковая кардиография, в офтальмологии – для определения размеров глазных сред. Основное применение ультразвука в терапии основано на механическим и тепловым действием на ткани. При операциях ультразвук применяют как ультразвуковой скальпель.

63. Инфразвук. Физическая характеристика инфразвука. Биофизическое действие ультразвука. ((Рем.,стр168)

Инфразвук– механические колебания с частотой меньше 20 Гц. Человеческое ухо не способно воспринимать такие колебания.

Источники инфразвука могут быть природными (грозовые разряды, землетрясения) и искусственными (взрывы, насосы).

Свойства: слабо поглощается (поэтому распространяется на большие расстояния), хорошо дифрагирует ( т.е. огибает препятствия),

Биофизическое действие связано с резонансными явлениями, которые возникают в некоторых системах организма из-за близости собственных частот к частоте инфразвуковых колебаний. Частота собственных колебаний тала человека в положении лёжа – 3-4 Гц, стоя – 5-12 Гц, грудной клетки и отдельных органов брюшной полости – 3-8 Гц.