- •Введение
- •1 Компоновка конструктивной схемы одноэтажного промышленного здания
- •1.1 Выбор сетки колонн
- •1.2 Выбор системы привязок колонн к разбивочным осям
- •1.3 Определение внутренних габаритов здания
- •1.4 Компоновка покрытия
- •1.5 Разбивка здания на температурные блоки
- •1.6 Обеспечение пространственной жесткости каркаса
- •1.7 Выбор типа и предварительное назначение размеров сечений колонн
- •2 Расчёт поперечной рамы здания
- •2.1 Сбор нагрузок на поперечную раму
- •2.1.1 Постоянные нагрузки
- •2.1.2 Временные нагрузки
- •2.2 Составление расчетной схемы
- •2.3 Схемы загружения поперечной рамы
- •2.4 Конструирование арматуры колонн
- •2.4.1 Надкрановая часть средних колонн
- •2.4.2 Надкрановая часть крайних колонн
- •2.4.3 Подкрановая часть крайних колонн
- •2.4.4 Подкрановая часть средних колонн
- •2.4.5 Распорки средних колонн
- •3 Проектирование фермы покрытия
- •3.1 Сбор нагрузок на арку
- •3.2 Составление расчетной схемы арки
- •3.3 Схемы загружения арки
- •3.4 Конструирование арматуры элементов арки
- •3.4.1 Верхний пояс арки
- •3.4.2 Нижний пояс арки
- •3.4.3 Подвески арки
- •3.5 Расчет и конструирование опорного узла арки
- •4 Расчёт и проектирование монолитного внецентренно нагруженного фундамента под колонну крайнего ряда
- •4.1 Данные для проектирования
- •4.2 Определение размеров подошвы фундамента
- •4.3 Проверка давлений под подошвой фундамента
- •4.4 Определение конфигурации фундамента и проверка
- •4.5 Проверка высоты нижней ступени
- •4.6 Подбор арматуры подошвы
- •4.7 Расчет подколонника и его стаканной части
- •Приложение а
2.2 Составление расчетной схемы
Поперечные рамы одноэтажных промышленных зданий являются статически неопределимыми системами и рассчитываются с использованием ЭВМ. Допускается использовать приближенные инженерные расчеты, основанные на методе сил и методе перемещений.
Цель статического расчета - определение усилий и перемещений в сечениях элементов рамы. Для расчета устанавливают расчетную схему, величины нагрузок и место их приложения.
В расчетной схеме рамы сопряжение ригеля с колонной принимают шарнирным, соединение колонны с фундаментом - жестким. Геометрические оси ригелей принимают горизонтальными, соединяющими места их опирания, жесткость ригелей - бесконечной.
В такой системе расчет ригелей можно выполнять независимо от расчета поперечной рамы. Длину колонн принимают равной расстоянию от обреза фундамента до низа ригеля. Размеры пролетов принимают равными расстоянию между геометрическими осями колонн. Для ступенчатых колонн учитывают сдвиг оси в месте ступени.
Рамы температурного блока объединены по верху жестким в своей плоскости диском покрытия, обеспечивающим их совместную пространственную работу. При действии общих для всего здания нагрузок (собственного веса конструкций, снега, ветра) пространственный характер работы каркаса не проявляется, так как все поперечные рамы находятся в одинаковых условиях и испытывают одинаковое горизонтальное перемещение верха колонн. Поэтому каждую раму можно рассматривать как отдельную плоскую систему.
При загружении местной крановой нагрузкой, приложенной к одной или двум рамам, остальные рамы этого температурного блока так же включаются в работу за счет жесткого диска покрытия и уменьшают горизонтальные перемещения верха загруженной рамы и усилия в её стойках. В этом и проявляется пространственный характер работы каркаса.
В инженерных расчётах пространственный характер работы каркаса при действии крановых нагрузок учитывается приближённо, путём эквивалентного увеличения жёсткости стоек загруженной рамы.
В проекте статический расчет поперечной рамы здания выполняется на компьютере с применением ПК ЛИРА 2013.
Многофункциональный программный комплекс ЛИРА предназначен для автоматизированного расчета, исследования и проектирования различных строительных конструкций зданий и сооружений. Пакет программ ЛИРА функционирует на основе использования метода конечных элементов. Ядром пакета является формирование целостной математической модели объекта в виде системы линейных алгебраических уравнений.
Расчетная схема представляет собой идеализированную модель, которая заменяет реальное сооружение или конструкцию при расчете. Степень приближения модели к реальной конструкции зависит от квалификации инженера-расчетчика и от возможности вычислительного комплекса, которым он обладает.
При выборе расчетной схемы учитывают следующие факторы:
1) геометрические характеристики реальной конструкции;
2) способ соединения различных частей элементов конструкции в узлах;
3) тип опирания;
4) вид нагружения.
Для составления расчетной схемы идеализированную модель конструкции необходимо разделить на конечные элементы. Для стержневых систем конечные элементы представляют собой отдельные стержни, соединенные в узлах. При разбивке систем на конечные элементы необходимо учитывать предполагаемое очертание эпюр внутренних усилий, изгибающих моментов, продольных и поперечных сил, а также изменение жесткости по длине элементов. Конечные элементы, имеющие одинаковые жесткостные характеристики, объединяются в жесткостные типы, геометрия всей системы описывается правой декартовой системой координат, оси координат наносят на расчетную схему. Расчетная схема не должна быть геометрически или мгновенно изменяемой.
На рисунке 8 показана расчётная схема поперечной рамы одноэтажного производственного здания. При формировании расчётной схемы крайние колонны разделены на следующие характерные части:
- верхние стержни (4, 13, 22) длиной 4,42 м и сечением 60х50 см;
- элементы подкрановой консоли (12,14) с длиной равной расстоянию между осями сечения ветвей и осью верхней (надкрановой) части колонны, жесткостью на порядок больше наибольшей жесткости сечения колонн;
- элементы подкрановой консоли (5,21) с длиной равной расстоянию между осью сечения нижней части колонны и осью верхней (надкрановой) части сплошной колонны, жесткостью на два порядка больше наибольшей жесткости сечения колонн;
- элементы ветвей (8-11,15-18), сечением 30х50 см;
- рядовые распорки (1,2,3), сечением 60х50 см, длиной равной расстоянию между осями ветвей.
Жёсткость ригеля
(7,19) при расчёте рамы считается равной
,
в действительности жёсткость ригеля
на 2 порядка больше наибольшей жёсткости
сечения колонн.
В расчётной схеме поперечной рамы одноэтажного промышленного здания 20 узлов, 22 элемента, имеющих 6 типов жёсткости (рисунок 8).
|
Рисунок 8 –Расчетная схема поперечной рамы (номера элементов; номера узлов).
