- •1.1Внутренняя обработка данных
- •1.1.1Логические основы эвм
- •1.1.2Функциональное строение эвм
- •1.1.3Понятие программы
- •1.1.4Архитектура эвм
- •1.1.5Производительность эвм
- •1.2Внешняя обработка данных
- •1.2.1Алгоритмы и структуры данных
- •1.2.2Программирование и языки программирования
- •1.2.3Процедурное программирование
- •1.2.4Функциональное программирование
- •1.2.5Логическое программирование
- •1.2.6Объектно-ориентированное программирование
- •2.Аппаратное и программное обеспечение
- •2.1Классификация эвм
- •2.2Аппаратные компоненты персональных эвм
- •2.2.1Структура пэвм
- •2.2.2Системная шина
- •2.2.3Центральный процессор
- •2.2.4Внешняя и внутренняя память
- •2.2.5Внешние устройства
- •2.2.6Внешние запоминающие устройства
- •2.2.7Внешние устройства ввода-вывода
- •2.2.8Видеосистемы
- •3.Вычислительные сети
- •3.1Понятие вычислительной сети
- •3.2Локальные вычислительные сети
- •3.2.1Архитектура локальной сети
- •3.2.2Аппаратные компоненты локальной сети
- •3.3Глобальная сеть Internet
- •3.3.1Общая характеристика глобальной сети Internet
- •3.3.2Адресация и маршрутизация в сети Internet
- •3.3.3Службы сети Internet
- •3.4Архитектура вычислительного процесса
- •3.4.1Архитектура приложения
- •3.4.2Централизованная архитектура
- •3.4.3Распределённая архитектура
- •3.4.4Архитектура «Клиент-сервер»
- •3.4.5Многозвенная архитектура
- •Список используемых сокращений
- •Использованная литература
- •Предметный указатель
- •Содержание
- •Александр Юрьевич Платов
- •603950, Н.Новгород, ул. Ильинская, 65.
3.Вычислительные сети
3.1Понятие вычислительной сети
Вычислительная сеть - ВС [network] – это совокупность ЭВМ, объединённых средствами передачи данных. Средства передачи данных в ВС в общем случае состоят из следующих элементов: связных ЭВМ, каналов связи (спутниковых, телефонных, волоконно-оптических и др.), коммутирующей аппаратуры и др.
В зависимости от удалённости ЭВМ, входящих в ВС, сети условно разделяют на локальные и глобальные.
Локальная сеть - ЛВС [local area network - LAN] – это группа связанных друг с другом ЭВМ, расположенных на ограниченной территории ( например, в здании). Расстояние между ЭВМ в локальной сети может достигать нескольких километров. Локальные сети развёртываются обычно в рамках некоторой организации, поэтому их называют также корпоративными сетями.
Если сеть выходит за пределы здания, то такая ВС называется глобальной [wide area network -WAN]. Глобальная сеть может включать в себя другие глобальные сети, локальные сети и отдельные ЭВМ.
Глобальные сети практически имеют те же возможности, что и локальные. Но они расширяют область их действия. Польза от применения глобальных сетей ограничена в первую очередь скоростью работы: глобальные сети работают с меньшей скоростью, чем локальные.
Сети предназначены для выполнения многих задач, в том числе:
организация совместного использования файлов для повышения целостности информации;
организация совместного использования периферийных устройств, например, принтеров, для уменьшения общих расходов на оборудование офиса;
обеспечение централизованного хранения данных для облегчения их защиты и архивирования.
Глобальные сети придают всему этому большие масштабы и добавляют такую удобную вещь, как электронная почта.
3.2Локальные вычислительные сети
3.2.1Архитектура локальной сети
Для характеристики архитектуры сети используют понятия физической и логической топологии.
Физическая топология [physical topology] – это физическая структура сети, способ физического соединения всех аппаратных компонентов сети. Существует несколько видов физической топологии.
Наиболее простой является физическая шинная топология [bus topology], в которой кабель идёт от ЭВМ к ЭВМ, связывая их в цепочку. Различают толстые и тонкие сети. Толстая сеть [thicknet] использует толстый коаксиальный кабель в качестве магистрали, от которого отходят более тонкие кабели (рис. 4.1).
В тонкой сети [thinnet] используется более тонкий и гибкий кабель, к которому напрямую подключены рабочие станции (рис. 4.2).
Сети, построенные по шинной топологии, более дёшевы. Однако если узлы сети расположены по всему зданию, то гораздо более удобным оказывается использование звездообразной топологии.
При физической звездообразной топологии [star topology] каждый сервер и рабочая станция подключаются к специальному устройству – центральному концентратору [hub], который осуществляет соединение пары узлов сети – коммутацию.
Р
ис.
4.6 Шинная
топология - толстая сеть
Обрыв кабеля, идущего от одной рабочей станции не повлияет на работу остальных рабочих станций. Кроме того, взаимное расположение рабочих станций совершенно не важно.
Р
ис.
4.7 Шинная топология -
тонкая сеть
Если сеть имеет много узлов, причём многие из них располагаются на большом удалении друг от друга, то расход кабеля при использовании звездообразной топологии будет очень большим. Кроме того, к концентратору можно подключить лишь ограниченное число кабелей. В таких случаях применяется распределённая звездообразная топология [distributed star topology], при которой несколько концентраторов соединяются друг с другом (рис. 4.4).
Кроме рассмотренных видов соединений может применяться также логическая кольцевая топология [ring topology], при которой рабочие станции соединены в кольцо.
Логическая топология сети [logical topology] определяет способ, в соответствии с которым устройства сети передают информацию от одного узла к следующему. Физическая топология не имеет прямого отношения к логической.
Различают два вида логической топологии: шинную и кольцевую.
Р
ис.
4.8 Звездообразная
топология
В логической шинной топологии процесс передачи данных организован следующим образом. Если какой-либо узел сети имеет данные для другого узла, то он производит «оповещение» всей сети. Все остальные узлы «слушают» сеть и проверяют, предназначены эти данные для них или нет. Если предназначены, то они оставляют их себе, если нет – игнорируют. Любые передаваемые данные «слышны» всем узлам сети. Узел, который хочет передать какие-то данные, сначала «слушает» сеть, не занята ли она. Если сеть свободна, то узел передаёт данные. Если расстояние между узлами велико, и посланный ранее кем-то сигнал ещё не успел дойти до передающего узла, то может произойти конфликт, когда в сети одновременно оказываются два сообщения. В этом случае передающие узлы сети на короткое время прекращают свою работу и через некоторый случайный промежуток времени возобновляют передачу данных.
Р
ис.
4.9 Распределённая
звездообразная топология
В сети с логической кольцевой топологией данные передаются по замкнутой эстафете от одного узла к другому. Когда посланное сообщение возвращается к передающему узлу, он прекращает передачу. Кольцевая топология менее подвержена конфликтам.
