- •Конспект лекций по дисциплине «оборудование предприятий по переработке пластмасс» Самара 2017 Введение
- •1. Оборудование подготовительного цикла
- •1.1. Оборудование для приемки, хранения и транспортирования сырья
- •1.1.1. Оборудование складов
- •1.1.2. Пневматическая система транспортировки гранулированных материалов
- •1.1.3. Устройства для питания и дозирования сыпучих материалов
- •1.2. Оборудование для измельчения
- •1.2.1. Основные виды измельчения
- •1.2.2. Режущие устройства для измельчения полимеров
- •1.2.3. Струйные мельницы
- •1.3. Оборудование для смешения
- •1.3.1. Классификация оборудования для смешения полимерных материалов
- •1.3.2. Барабанные смесители
- •1.3.3. Смесители с быстровращающимися роторами
- •1.3.4. Двухроторные смесители
- •1.4. Оборудование для гранулирования
- •1.5. Оборудование для сушки материалов
- •1.6. Оборудование для подготовки реактопластов к прессованию
- •1.6.1. Оборудование для таблетирования
- •1.6.2. Оборудование для пластикации
- •1.6.3. Аппараты для предварительного нагрева материалов
- •2. Формующее оборудование
- •2.1. Машины для литья под давлением
- •2.1.1. Сущность метода
- •Классификация литьевых машин
- •2.1.3. Конструкции литьевых машин
- •2.3 Литьевые сопла, типовые конструкции
- •2.2. Экструдеры и агрегаты на их основе
- •2.2.1. Сущность метода
- •2.2.2. Общее устройство и работа одночервячного экструдера
- •2.2.3. Классификация экструдеров
- •2.2.4. Функциональные зоны канала червяка
- •2.2.5. Совместная работа функциональных зон
- •2.2.6. Конструкция основных узлов и деталей экструдеров
- •2.2.7. Устройства для фильтрации расплава
- •2.2.7. Общее устройство и работа двухчервячного экструдера
- •2.2.8. Дисковые и дисково-червячные экструдеры
- •2.2.9. Экструзионные линии
- •2.2.10. Экструзионная линия для производства листов из термопластов и слоистых пластиков
- •- Производство полимерных пленок из гранулированных термопластов
- •2.2.12. Общее устройство экструзионных головок
- •2.2.10. Классификация головок
- •2.3. Оборудование для формования полых изделий
- •2.3.1. Общее устройство и работа экструзионно-раздувных агрегатов
- •2.3.2. Конструкция основных узлов экструзионно-выдувных агрегатов
- •2.3.3. Оборудование для инжекционно-выдувного формования
- •2.4.Оборудование для формования изделий из листовых термопластов
- •2.4.1. Сущность и разновидность метода пневмовакуумного формования
- •2.4.2. Процессы, протекающие при формовании
- •2.4.3. Разновидности оборудования для пневмовакуумного формования
- •2.4.4. Конструкция основных узлов машин для пневмовакуумного формования
- •2.5. Каландры и каландровые машины
- •2.5.1. Принцип действия и операции, выполняемые на каландрах
- •2.5.2. Конструкция каландра
- •2.6. Прессы для переработки реактопластов
- •2.6.1. Сущность метода прессования
- •2.6.2. Устройство и работа пресса
- •2.6.3. Конструкция узлов и деталей пресса
- •2.6.4. Автоматизированные прессовые комплексы
- •1.1 Классификация процессов механической обработки по назначению
- •1.2 Зачистка пластмассовых изделий
- •1.3 Токарная обработка пластмасс
- •1.3.1 Основные операции и технологические параметры токарной обработки
- •1.3.2 Токарные станки и приспособления
- •1.3.3 Режущий инструмент
- •1.3.4 Режимы резания
- •1.4 Фрезерование пластмасс
- •1.4.1 Типы фрез
- •1.4.2 Режимы резания
- •1.5 Сверление, зенкерование, развертывание
- •1.5.1 Составные части сверла
- •1.5.2 Режимы резания
- •1.6 Резка пластмасс
- •1.6.1 Методы резки пластмасс
- •1.6.2 Режимы резания
1.3.3 Режущий инструмент
Обточка пластмассовых заготовок производится токарными резцами. По конструкции резцы могут быть цельные (выполненные из одного материала) и составные (державка – из конструкционной стали, а рабочая часть – из специального инструментального материала). Рабочая часть составного резца прикрепляется к державке обычно сваркой или припаиванием. В качестве инструментальных сталей для изготовления резцов (или их рабочей части) применяются углеродистые, легированные и быстрорежущие стали, а также твердые сплавы. Углеродистые стали ввиду их невысокой стойкости имеют ограниченное применение. Резцы из быстрорежущих сталей Р9, Р18 применяются при обработке многих видов термопластов и реактопластов, кроме стеклопластиков. В последнее время широкое применение нашли резцы с алмазными зернами, имеющими исключительно высокую стойкость. Низкая механическая прочность алмаза затрудняет применение этих резцов при точении прерывистых поверхностей и черновой обработке.
1.3.4 Режимы резания
Режимы резания – это совокупность технологических параметров токарной обработки заготовок. К таким параметрам относятся: скорость резания V, подача S, глубина резания t. Производительность обработки и качество поверхности изделия существенно зависят от выбранных режимов резания. Так, увеличение всех параметров резания повышает производительность токарной обработки. В то же время увеличение скорости резания приводит к повышению температуры обрабатываемой заготовки и интенсивному износу инструмента, к понижению его стойкости. Повышение температуры материала заготовки может привести к его деструкции и ухудшению качества обрабатываемой поверхности. Величина подачи также влияет на качество поверхности: увеличение подачи выше определенного значения является причиной шероховатой поверхности.
Применение алмазного режущего инструмента позволяет существенно увеличить производительность труда и улучшить качество обрабатываемой поверхности.
1.4 Фрезерование пластмасс
Фрезерование – технологическая операция, заключающаяся в обработке плоских и фасонных поверхностей, поверхностей тел вращения, прорезания канавок, пазов, шлицей, нарезания зубьев и т.д.
Режущим инструментом при фрезеровании служит фреза, которая закрепляется в шпинделе станка и получает вращательное движение.
Скорость резания при фрезеровании V (м/мин) определяется по формуле
V=Dфn/1000,
где Dф – диаметр фрезы, мм; n – частота вращения шпинделя, об/мин.
Подача осуществляется столом, на котором закреплена заготовка. Скорость подачи обычно определяется в мм на один зуб фрезы - Sz, тогда минутная подача Sм, т.е. величина перемещения заготовки за одну минуту, равна
Sм=Sznz,
где z – число зубьев фрезы
Число зубьев фрезы выбирается из расчета размещения стружки во впадине зуба.
1.4.1 Типы фрез
При обработке заготовок и деталей из пластмасс применяются фрезы для обработки металлов, так как специальные фрезы для фрезерования пластмасс выпускаются в очень узком ассортименте.
На рис. 1.5 изображены наиболее распространенные типы фрез, применяемые при обработке пластмассовых заготовок.
Рис. 1.5. Схема фрезерования поверхностей деталей из пластмасс цилиндрическими (а), торцовыми (б), дисковыми трехсторонними (в) и пазовыми (г), концевыми (д) и угловыми (е) фрезами |
Цилиндрические фрезы (рис. 1.5, а) применяются при фрезеровании плоских поверхностей шириной до 120 мм. Фреза имеет базовое отверстие со шпоночной канавкой, в которое вставляется оправка, передающая ей вращение от шпинделя станка.
Торцовые фрезы (рис. 1.5, б) имеют диаметр Dф до 600 мм и применяются для обработки широких плоских поверхностей.
Дисковые фрезы (рис. 1.5, в, г) имеют диаметр Dф=60÷110 мм и цилиндрическое базовое отверстие для крепления на оправке. Режущие зубья выполняются на цилиндрической внешней поверхности, а также и на торцовых поверхностях. Дисковые фрезы предназначены для фрезерования канавок и пазов до 16 мм.
Концевые фрезы (рис. 1.5, д) имеют наружный диаметр рабочей части от 3 до 50 мм и предназначены для обработки открытых пазов, замкнутых профильных углублений и отверстий в плоских заготовках.
Угловые фрезы (рис. 1.5, е) применяются для фрезерования профильных угловых канавок; имеют диаметр Dф=35÷90 мм.
В качестве материала для фрез применяются инструментальные стали, быстрорежущие стали, используются также фрезы с пластинками из твердых сплавов. Для обработки деталей из термопластов рекомендуются фрезы из инструментальной стали, для обработки деталей из реактопластов – фрезы из быстрорежущей стали и с пластинками из твердых сплавов.
Значения переднего γ и заднего α углов зависят от материала фрез и обрабатываемого материала. Оптимальная величина переднего угла зуба фрез из быстрорежущей стали 10º, с пластинками из твердых сплавов γ=5÷8º. Оптимальное значение заднего угла α=18÷20º.
