- •2. Классификация органических соединений
- •3. Соединения с открытой цепью углеродных атомов
- •3.1. Углеводороды
- •3.1.1. Алканы
- •3.1.2. Алкены или олефины (соединения этиленового ряда)
- •3.1.3. Углеводороды с двумя двойными связями (алкадиены)
- •3.1.4. Алкины (ацетиленовые углеводороды)
- •4. Карбоциклические соединения
- •4.1. Алициклические соединения
- •4.2. Ароматические соединения
- •4.2.1. Ароматические углеводороды ряда бензола
- •4.2.2. Ароматические соединения с конденсированными ядрами
- •5. Производные углеводородов
- •5.1. Галогенпроизводные углеводородов
- •5.2. Металлоорганические соединения.
- •5.3. Спирты
- •5.4. Фенолы
- •5.6. Альдегиды и кетоны
- •5.7. Карбоновые кислоты
- •5. 8. Нитросоединения
- •5.9. Амины
- •5.10. Диазо- и азосоединения
- •5.11. Сульфокислоты (сульфоновые кислоты)
- •6. Полимеры
- •6.1. Полимеры, получаемые методом поликонденсации
- •6.2. Полимеры, получаемые методом полимеризации
- •7. Указания к выполнению контрольных работ
- •7.1. Примеры решения задач
- •8. Контрольные задания
- •8.1 Контрольная работа № 1
- •8.2. Контрольная работа № 2
5.6. Альдегиды и кетоны
Альдегидами и кетонами называют производные углеводородов, содержащие карбонильную группу (1). Различие между альдегидами и кетонами состоит в том, что в альдегидах одним из заместителей при карбонильной группе является атом водорода (2):
1 2
Изомерия альдегидов связана со строением радикалов. Изомерия кетонов связана со строением радикалов и положением карбонильной группы в углеродной цепи.
Высокая реакционная способность альдегидов и кетонов обусловлена полярностью и легкой поляризуемостью карбонильной группы вследствие различной электроотрицательности атомов углерода и кислорода:
Из способов получения карбонильных соединений следует изучить оксосинтез (условия), окисление спиртов, реакцию Кучерова (стадии, условия), гидролиз дигалогенпроизводных углеводородов.
По карбонильному атому углерода альдегидов и кетонов происходит нуклеофильное присоединение воды, спиртов, синильной кислоты, гидросульфита (бисульфита) натрия, реактивов Гриньяра и мезомерного карбаниона в реакциях альдольной конденсации. Реакции нуклеофильного присоединения ускоряются кислотами и основаниями, но сильные нуклеофильные агенты присоединяются без катализатора (NaHSO3, NH2OH, RМgHal). Кетоны менее реакционноспособны в этих реакциях, чем альдегиды, т.к. присутствие дополнительной алкильной группы в кетоне понижает частичный положительный заряд на карбонильном атоме углерода, а также вызывает пространственные затруднения при атаке этого атома углерода.
При кислотном катализе протон присоединяется к карбонильному атому кислорода с образованием активного карбкатиона:
карбкатион
К реакциям присоединения относятся реакции восстановления альдегидов и кетонов.
Следует обратить внимание на высокую реакционную способность водородного атома, находящегося в -положении, к альдегидной группе. Реакция альдольной конденсации имеет большое значение при образовании сахаристых веществ.
Ароматические альдегиды и кетоны − это соединения с карбонильной группой, связанной с атомом углерода бензольного кольца или боковой цепи.
Ароматические альдегиды и кетоны получают гидролизом геминальных арилдигалогенидов; окислением углеводородов и ароматических спиртов; по реакции Гаттермана-Коха (прямое введение альдегидной группы); при конденсации ароматических альдегидов по Кляйзену и по реакции Фриделя-Крафтса (ацилирование):
Ароматические альдегиды вступают в большинство реакций, свойственных альдегидам алифатического ряда. Альдегидная группа является электроноакцепторной группой и дезактивирует ароматическое кольцо в реакциях электрофильного замещения (SЕ), способствуя м-ориентации.
Ароматические кетоны менее реакционноспособны, чем кетоны алифатического ряда. Они вступают в реакции с гидроксиламином, фенилгидразином, в реакции со сложными эфирами, ангидридами кислот и т.д. Несимметричные алкилароматические и ароматические кетоны с гидроксиламином образуют по два изомерных оксима − син- и анти-:
Более стойкой является анти-форма. Под действием сильных минеральных кислот оксимы перегруппировываются в амиды кислот. Эта перегруппировка называется перегруппировкой Бекмана. Кетонная группы дезактивирует кольцо в реакциях электрофильного замещения и является для них м-ориентантом.
