- •Рецензенты:
- •Оглавление
- •От авторов
- •Введение
- •1 Общие свойства технических материалов
- •1.1 Классификация технических материалов
- •1.2 Сведения о строении вещества
- •1.3 Основные понятия зонной теории
- •2 Проводниковые материалы
- •2.1 Общие сведения о проводниках
- •2.2 Основы металлургии
- •2.2.1 Диаграммы состояния сплавов
- •2.2.2 Стали и сплавы
- •2.3 Физическая природа электропроводности проводников
- •2.4 Сверхпроводящие материалы
- •2.4.1 Физика низкотемпературной сверхпроводимости
- •2.4.2 Высокотемпературные сверхпроводящие материалы на основе сложных оксидов
- •2.4.3 Применение криопроводников
- •2.5 Свойства благородных металлов
- •2.6 Цветные металлы и сплавы
- •2.7 Проводниковые конструкции из биметалла
- •2.8 Сплавы высокого сопротивления и сплавы для термопар
- •2.9 Припои и флюсы
- •2.10 Неметаллические проводящие материалы
- •3 Полупроводниковые материалы
- •3.1 Общие сведения о полупроводниках
- •3.2 Основы технологии получения электротехнических материалов
- •3.2.1 Классификация способов очистки электротехнических материалов
- •3.2.2 Получение чистых полупроводниковых материалов
- •3.2.3 Выращивание полупроводниковых монокристаллов
- •3.2.4 Легирование материалов радиационным способом
- •3.2.5 Основные свойства некоторых элементарных полупроводников и полупроводниковых соединений
- •3.3 Применение полупроводниковых материалов
- •4 Диэлектрические материалы
- •4.1 Общие сведения о диэлектриках
- •4.2 Виды поляризации диэлектриков
- •4.3 Диэлектрическая проницаемость диэлектрика
- •4.4 Электропроводность диэлектриков
- •4.5 Виды электрического пробоя диэлектриков
- •4.6 Механические, тепловые и физико-химические свойства диэлектриков
- •4.7 Общая характеристика газовой изоляции
- •4.8 Развитие разряда в однородном поле
- •4.9 Развитие разряда в неоднородном поле
- •4.10 Разряд в газе вдоль поверхности твердого диэлектрика
- •4.11 Коронный разряд на проводах линий электропередачи
- •4.12 Изоляционные конструкции оборудования высокого напряжения
- •4.13 Неорганические и органические диэлектрики
- •5 Магнитные материалы
- •5.1 Классификация магнитных материалов
- •5.1.1 Парамагнетики
- •5.1.2 Диамагнетики
- •5.1.3 Ферромагнетики
- •5.1.4 Антиферромагнетики
- •5.1.5 Ферримагнетики
- •5.1.6 Метамагнетики
- •5.1.7 Деление магнитных материалов на группы
- •5.2 Основные характеристики магнитных материалов
- •5.3 Магнитомягкие материалы
- •5.3.1 Технически чистое железо и электротехнические стали
- •5.3.2 Сплавы железа с металлами
- •5.3.3 Ферритовые материалы
- •5.3.4 Магнитодиэлектрики
- •5.4 Магнитотвёрдые материалы
- •5.4.1 Сплавы с различной технологией твердения
- •5.4.2 Магнитотвёрдые композиты
- •5.5 Разработки специальных магнитных материалов
- •5.5.1 Термомагнитные материалы
- •5.5.2 Магнитострикционные материалы
- •Список литературы
- •Конструкционные электротехнические материалы
3.2 Основы технологии получения электротехнических материалов
Технологический процесс получения материалов электронной техники – совокупность способов и процессов переработки сырья в проводники, полупроводники, диэлектрики и магнетики [1,5-7].
Способ переработки (в технологии его называют способом производства) – последовательное описание операций, протекающих в соответствующих аппаратах. Такое описание называют технологической схемой. Операция происходит в одном или нескольких аппаратах и представляет собой сочетание различных технологических процессов: тепловых, массообменных, механических и химических.
Материалы электронной техники получают в основном с помощью химико-технологических процессов, состоящих из ряда элементарных физических, физико-химических и химических процессов (операций), которые складываются из следующих основных стадий:
1) подготовки сырья и подвода реагирующих компонентов в зону реакции;
химических превращений (реакций);
отвода из зоны реакции полученных продуктов и выделения целевого продукта.
В первой стадии протекают физические процессы, в результате которых перерабатываемые материалы изменяют только свою внешнюю форму или физические свойства и химически неизмененными переходят во вторую стадию. Подвод реагирующих компонентов в зону реакции может совершаться диффузией или конвекцией, абсорбцией или десорбцией газов, конденсацией паров, плавлением твёрдых веществ или растворением их в жидкости, испарением жидкостей или возгонкой твёрдых веществ и др.
В результате кроме основного образуются побочные продукты (материалы, имеющие народнохозяйственное значение) или отходы производства, т. е. продукты реакций, не имеющие значительной ценности. Побочные продукты и отходы производства могут образоваться как при основной реакции наряду с основным продуктом, так и вследствие побочных реакций между основными веществами и примесями. Обычно при анализе производственных процессов учитываются не все реакции, а лишь те из них, которые оказывают определяющее влияние на количество и качество получаемых основных продуктов.
В третьей стадии химических превращений нет, здесь происходит разделение: выделяются целевой (основной) продукт, побочные продукты и оставшиеся исходные реагенты, которые могут быть возвращены в начало процесса.
Для организации и оптимизации технологического процесса большое значение имеет его технологический режим. Технологическим режимом называют совокупность основных факторов (параметров), влияющих на скорость процесса, выход и качество продукта. Для большинства технологических процессов производства материалов электронной техники основными параметрами режима являются температура, давление, способ подвода и перемешивание реагентов и др. Параметры технологического режима определяют принципы конструирования соответствующих реакторов. Оптимальному значению параметров технологического режима соответствуют максимальные производительность аппаратов и производительность труда персонала, обслуживающего процесс. По характеру протекания во времени технологические процессы подразделяют на периодические, непрерывные и комбинированные.
