Скачиваний:
248
Добавлен:
23.01.2015
Размер:
2.42 Mб
Скачать

20. Кардинальные числа и их свойства.

Кардинальным числом (или кардиналом) называется наименьший ординал заданной мощности.

Заметим, что по теореме 1: в любой совокупности ординалов есть наименьший, поэтому наше определение корректно.

Вообще говоря, кардинальное число можно отождествить с мощностью, которую оно представляет. Действительно, взаимно однозначное соответствие между кардинальными числами и мощностями очевидно. В ряде учебников мощность множества определяется как наименьший ординал, эквивалентный данному множеству. Мы будем в дальнейшем отождествлять кардинальное число с соответствующей мощностью. В частности,

Некоторые из ординальных чисел являются мощностями, некоторые – нет. Например, все натуральные числа 0, 1, 2, ... – мощности, – мощность. Однаконе являются мощностями. Нетрудно видеть, что всякая бесконечная мощность является предельным ординалом. Действительно, пусть– бесконечный непредельный ординал. Тогдадля некоторогоТак какбесконечен, тоЗначит,не может быть мощностью.

Пусть и– ординальные числа. Определим с помощью трансфинитной индукции числоА именно, положимдля предельного ординалаТаким образом мы можем построить ординалыи т.д.

%% Принцип трансфинитной индукции. Пусть – некоторое свойство ординальных чисел. Предположим, что наименьший ординал 0 обладает свойствоми для каждого ординалаесли всеобладают свойствомтообладает свойствомТогда свойствомобладают все ординальные числа.

Доказательство. Пусть верно не для всех ординаловТогда существует наименьший ординалдля которогоневерно. Так как– наименьший, то всеобладают свойствомНо тогда иобладает свойствомчто противоречит выбору%%

Теорема 5. В любой совокупности каких-либо множеств есть множество, наименьшее по мощности.

Доказательство. Пусть – совокупность множестви– их мощности. Тогда по теореме 1 средиесть наименьшее. Соответствующее множествобудет иметь наименьшую мощность.

Ранее мы видели, что Оказывается, что аналогичное равенство справедливо для любой бесконечной мощности.

(СН) Континуум-гипотеза: не существует мощности удовлетворяющей условию

Следующее утверждение является усилением континуум-гипотезы.

(GCH) Обобщённая континуум-гипотеза: каково бы ни было ординальное число не существует мощностиудовлетворяющей неравенству

Гипотеза континуума была сформулирована ещё в XIX веке Г.Кантором. Многие математики XIX – XX веков пытались её решить, но попытки оказывались неудачными. Лишь в 1964 году американскому математику Дж.Коэну удалось решить эту проблему. Ответ оказался неожиданным: гипотезу континуума невозможно ни доказать, ни опровергнуть.

21. Мощность множества АхА

Теорема 6. Если – бесконечная мощность, то

Доказательство. Нам надо фактически доказать, что для любого бесконечного множестваПредположим, что это не так. Тогда по теореме 5 существует множествонаименьшей мощности такое, чтоВвиду теоремы Цермело мы можем считать, что множествовполне упорядочено. Рассмотрим начальные отрезкимножестваудовлетворяющие условиюТакие отрезки существуют, например, отрезок, изоморфный натуральному рядуДля каждого такого начального отрезкаесть взаимно однозначное отображениеРассмотрим множество пари введём на нём отношение порядка, положивеслииПроверим, что множествоудовлетворяет условиям леммы Цорна. Действительно, пусть– цепь вПоложим(отображениемы рассматриваем здесь как подмножество множестваТогдавзаимно однозначно и– мажоранта цепиИтак, множествоудовлетворяет условиям леммы Цорна. Следовательно, в множествесуществует максимальный элементЗдесь– взаимно однозначное отображение.

Так как топоэтому(см. следствие 4 из теоремы 3 раздела 2.2). Очевидно,– вполне упорядоченное множество, большее по мощности, чемпоэтомуимеет начальный отрезокПустьТогдаВвиду наличия взаимно однозначного отображениявсе четыре скобки равномощны множествуСледовательно, существует взаимно однозначное отображениеЭто означает, что– взаимно однозначное отображение, продолжающееНо– максимальный элемент, аМы получили противоречие. Тем самым установлено, что