Скачиваний:
190
Добавлен:
23.01.2015
Размер:
2.43 Mб
Скачать

28. Ультрафильтр. Характеризация ультрафильтров.

Фильтр на множественазываетсяультрафильтром, если он максимальный по включению, т.е. для любого фильтра

Теорема 2. Всякий фильтр вкладывается в ультрафильтр. Доказательство. Пусть – фильтр на множествеОбозначим черезчастично упорядоченное по включению множество всех фильтровна множествеДокажем, что вкаждая цепь имеет верхнюю границу. Действительно, пусть– цепь фильтров. ПоложимДокажем, что– тоже фильтр. Так какни при какомтоДалее, пустьиТогдапри некоторомТак как– фильтр, тоСледовательно,Наконец, пустьТогдапри некоторыхТак как– цепь, то либолибоПусть, например,ТогдаТак как– фильтр, тоОтсюда получаем:Итак,– фильтр, который, очевидно, является верхней границей цепиПо лемме Цорна в множествеесть хотя бы один максимальный элементЭто и будет ультрафильтр, содержащий фильтр

Теорема 3. Фильтр на множествеявляется ультрафильтромесли для любоголиболибоДоказательство. Необх-ость(=>). Пусть – ультрафильтр итаково, чтоДокажем, чтоПредположим, чтоРассмотрим следующую совокупность подмножеств множестваДокажем, что– центрированная система. Пусть... ,(при этомТак как– фильтр, тоНам надо доказать, чтоПредположим, что ТогдаСледовательно,а это противоречит предположению. Итак,– центрированная система. По теореме 1 существует фильтртакой, чтоПустьТогдапоэтомуа значит,F. Итак,Кроме того,а это означает, чтоне максимальный. Мы получили противоречие.Дост-сть(<=). Пусть – фильтр со свойством:илиДокажем, что– ультрафильтр. Пусть– такой фильтр, чтоНадо доказать, чтоПустьТак кактоа значит,Так какитот.е.а это противоречит тому факту, что– фильтр. Теорема доказана.

29. Ультрапроизведение моделей. Истинность формул на ультрапроизведении. Th. Лося.

Пусть – совокупность моделей одной и той же сигнатурыгде– множество символов операций, а– множество символов отношений. Рассмотрим вначалепрямое произведение множеств Обозначается оноа определяется как множество наборов(краткое обозначение:гдепри каждом(Если множествоконечно, скажем,то– это множество троекгдеНа множествелегко ввести операции иза именно: если– символп-арной операции, то положим

т.е. определим операции покомпонентно.

Пусть – ультрафильтр на множествеи– совокупность моделей одной сигнатурыВведём на произведенииотношение ~, положивПроверим, что ~ является отношением эквивалентности. Имеем: так какзначит, ~ рефлексивно. Симметричность отношения ~ очевидна. Докажем теперь его транзитивность. ПустьиТогдаиЕслитоиоткудаСледовательно,а значит,Таким образом, отношение ~ транзитивно и потому является отношением эквивалентности.

Множество отношением ~ разбивается на классы эквивалентности. Множество классов эквивалентности мы будем обозначатьи называтьультрапроизведением. Класс эквивалентности, в котором лежит элемент мы будем обозначатьЧтобы превратитьв модель сигнатурынам надо определить на этом множестве функциии предикаты

Пусть п-арная функция. Положим

Надо доказать корректность этого определения, т.е. независимость значения функции от выбора представителей классов. А именно, надо показать, что если . . . ,то~ПоложимПо условиюНо тогдаДля каждогомы имеем:=Следовательно,~

Теперь рассмотрим т-арный предикат Будем считать, чтов том и только том случае, еслиДокажем корректность этого определения, т.е. независимость от выбора представителей. Пусть. . . ,ПоложимТак кактоПустьЕслитоДля элементоввыполнены равенстваиЗначит,прии поэтому

Большое значение ультрапроизведений в теории моделей объясняется тем, что, в отличие от обычного прямого произведения, ультрапроизведение сохраняет утверждения, выраженные формулами логики первого порядка.

Теорема 4. (Лося) Пусть – ультрапроизведение моделейодной и той же сигнатурыФормуладанной сигнатуры истинна на наборев том и только в том случае, если

Доказательство. Избавимся в формуле от связокии кванторапользуясь эквивалентностямиДальнейшее доказательство проведём индукцией по длине формулыпонимая под длиной количество связоки квантороввходящих в формулу.

Пусть – атомарная формула, то есть

где п-местный предикат, а – термы. Выясним, когда формулаистинна на наборе. . . ,Это будет в том и только в том случае, если

что и требовалось доказать.

Пусть теперь =Тогда

(по предположению индукции) (по th3: Фильтр на множествеявляется ультрафильтромесли для любоголиболибо)что и требовалось доказать.

Если то=ПустьиПо предположению индукциии аналогично дляЗначит,

Осталось рассмотреть случай, когда Имеем:в том и только в том случае, еслипри некоторомЗафиксируем наборПусть выполнено

Тогда по предположению индукции

Положим Из вида формулыследует, чтоТак както

Наоборот, пусть Тогда длянайдём такоечтоДляв качествевозьмём любые элементы. ПустьТогда Так кактоСледовательно, выполнено