Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

FTF 4 semestr / 3

.docx
Скачиваний:
56
Добавлен:
22.01.2015
Размер:
360.1 Кб
Скачать

Электронная природа химических связей в органических соединениях.

Электронная природа химических связей в органических соединениях

1. Все органические вещества содержат углерод. В молекулах органических веществ углерод переходит в возбуждённое состояние:

 

 

 

2. Органическим соединениям свойственны ковалентные связи. Ковалентная связь в молекулах характеризуется: энергией, длиной, насыщаемостью и пространственной направленностью.

 

а) Из курса химии 8 класса вы знаете, что ковалентная связь образуется за счёт перекрывания электронных облаков, при этом выделяется энергия, чем больше перекрывание, тем больше выделяется энергии и  тем прочнее связь.

Типы перекрываний электронных облаков в порядке возрастания их прочности и энергии выделяемой при образовании:

σ(s  s) < σ(s  p) < σ (p  p)

 

б) Длина связи определяется расстоянием между центрами ядер связывающихся атомов и измеряется в нанометрах (1 нм = 10-9 м). С повышением кратности связи (одинарная, двойная, тройная) длина становится меньше, а энергия выше:

(С – С)  <  (C = C  (C  C)

 

в) Под насыщаемостью связи понимают способность образовывать строго определённое количество ковалентных связей.

 

г) Направленность ковалентной связи определяется взаимным расположением электронных облаков, участвующих в образовании химической связи. Ковалентная связь образуется в направлении максимального перекрывания электронных орбиталей взаимодействующих атомов. 

Вы уже знаете, что атом углерода содержит на внешнем уровне четыре валентных электрона:

1 электрон на s – орбитали сферической формы

3 электрона на трёх  p – орбиталях, орбитали имеют форму гантели и расположены под углом 90˚.

 рис. Атом углерода в возбуждённом состоянии (s1px1py1pz1)

 

Таким образом можно предположить, что в молекуле метана CH4 атом углерода не может образовать 4 одинаковых связи с четырьмя атомами водорода (1 атом водорода имеет 1 электрон на s – орбитали сферической формы).  Однако экспериментально доказано, что в молекуле метана все связи С – Н равноценны и направлены к вершинам правильного тетраэдра под углом 109˚28`.

В 1931 г. американский учёный Л. Полинг доказал, что в молекуле метана в момент образования молекулы электронные облака смешиваются и образуют гибридные электронные облака, происходит процесс гибридизации.

 

Гибридизация – процесс смешения разных, но близких по энергии, орбиталей данного атома, с возникновением  того же числа новых гибридных орбиталей, одинаковых по форме и энергии.

 

В зависимости от числа вступивших в гибридизацию орбиталей атом углерода может находиться в одном их трёх состояний гибридизации: sp3, sp2, sp.

 

sp3 – гибридизация:  происходит смешение одной s и трёх p орбиталей. Образуются четыре одинаковые гибридные орбитали, расположенные относительно друг друга под тетраэдрическим углом 109˚28`. Образуются 4 ковалентные σ – связи. 

Объяснение

рис. Строение молекулы метана СН4 (тетраэдрическое)

sp2 – гибридизация:  происходит смешение одной s и двух p орбиталей. Образуются три одинаковые гибридные орбитали, они расположены относительно друг друга под углом 120˚,  лежат в одной плоскости и стремятся к вершинам треугольника. Образуются 3 ковалентные σ – связи.

Объяснение

Оставшаяся одна негибридизованная орбиталь расположена перпендикулярно плоскости образования σ – связей и участвует в образовании  П - связи.

 

 

рис. Строение молекулы этилена С2Н4 (плоское тригональное)

 

sp – гибридизация:  происходит смешение одной s и одной p орбитали. Образуются две одинаковые гибридные орбитали, они расположены относительно друг друга под углом 180˚,  лежат на одной линии. Образуются 2 ковалентные σ – связи. 

Объяснение

 

Оставшиеся две негибридизованные  орбитали расположены во взаимно перпендикулярных  плоскостях и образуют  две П - связи.

рис. Строение молекулы ацетилена С2Н2 (линейное)

Направленность гибридных орбиталей в пространстве,  а следовательно, и геометрическое строение молекул зависят от типа гибридизации. На форму молекулы в пространстве влияет  направленность только σ – связей.

 

СТЕПЕНЬ ОКИСЛЕНИЯ АТОМА УГЛЕРОДА

 

Для атома углерода  в органических соединениях характерны степени окисления от -4 до +4.

 

Пример №1.

С-4H4

 

C-3H3 – C-3H3

 

C-2H2=C-2H2

 

C-1H ≡ C –1H

 

 Пример №2.  Укажите степени окисления всех элементов в CH3CH2OH

       

Решение. Нахождение степеней окисления в органических соединениях имеет свою специфику. В частности, необходимо отдельно находить степени окисления для каждого атома углерода. Рассуждать можно следующим образом. Рассмотрим, например, атом углерода в составе метильной группы (СН3 –) . Данный атом  С соединен с 3 атомами водорода и соседним атомом углерода. По связи С-Н происходит смещение электронной плотности в сторону атома углерода (т. к. электроотрицательность  углерода  превосходит ЭО водорода). Если бы это смещение было полным, атом углерода приобрел бы заряд -3.

       Атом С в составе группы -СН2ОН связан с двумя атомами водорода (смещение электронной плотности в сторону С), одним атомом кислорода (смещение электронной плотности в сторону О) и одним атомом углерода (можно считать, что смещения эл. плотности в этом случае не происходит). Степень окисления углерода равна -2 +1 +0 = -1.

       

Ответ: С-3H+13C-1H+12O-2H+1.

 

Простая и кратная ковалентные связи

 

Способность атома углерода иметь разные степени окисления и лёгкость гибридизации позволяет атому углерода образовывать одинарные, и кратные (двойные и тройные связи) не только с другими атомами углерода, но и с атомами других элементов-органогенов:

СН3 – СН3 (1 σ – сигма связь С-С)

CH2=CH2 (1 σ – сигма связь С-С и 1 П – пи связь С-С)

CH ≡ CH (1 σ – сигма связь С-С и 2 П – пи связи С-С)

Соседние файлы в папке FTF 4 semestr