- •Резание материалов
- •Часть 2
- •Введение
- •Глава 9 Силы резания при точении, сверлении и фрезеровании
- •Глава 10 Вибрации в процессе резания
- •2. Упругая система станка
- •3. Влияние условий и режима резания на параметры колебаний
- •4. Использование колебаний для улучшения условий резания.
- •5. Автоколебания в процессе резания
- •Глава 11 Тепловые явления в процессе резания
- •1. Источники тепловыделения
- •2. Отвод тепла из зоны резания
- •3. Тепловой баланс
- •4. Температура резания
- •4.1. Температурное поле в стружке
- •4.2. Температурное поле в обрабатываемой заготовке
- •4.3. Температурное поле в инструменте
- •5. Влияние различных факторов на температуру резания
- •6. Пути снижения температуры на лезвии резца
- •7. Способы измерения температуры резания
- •7.2. Измерение температуры резания при помощи естественной термопары
- •Глава 12 Износ и стойкость режущих инструментов
- •1. Физическая природа изнашивания
- •2. Формы очагов износа
- •3. Критерии затупления инструмента
- •4. Стойкость инструмента и допускаемая им скорость резания
- •5. Влияние различных факторов на стойкость инструмента
- •6. Прочность и разрушение режущих инструментов
- •6.1. Пластическая деформация и пластическая прочность
- •6.2. Хрупкое разрушение и хрупкая прочность режущих инструментов
- •7. Понятие о надежности режущих инструментов
- •Глава 13 Качество поверхности деталей машин
- •1. Структурная схема качества поверхности
- •2. Геометрические показатели качества, поверхностного слоя
- •2.2. Шероховатость поверхности
- •3. Упрочнение поверхностного слоя
- •4. Остаточные напряжения металла поверхностного слоя
- •Глава 14 Обзор принципиальных кинематических схем обработки
- •Глава 15 Режимы резания
- •1. Служебное назначение режимов резания
- •2. Предварительный выбор основных режимных параметров
- •3. Выбор основных режимных параметров
- •4. Расчет остальных режимных параметров
- •5. Оценка рентабельности расчетных режимных параметров
- •6. Последовательность расчета режима резания при точении
- •Глава 16 Оптимизация режимов резания
- •1. Последовательность назначения элементов режима резания при одноинструментальной работе
- •2. Назначение оптимального режима резания
- •Глава 17 Основные понятия теории планирования экспериментов. Математические модели при автоматизированном проектировании технологических процессов
- •Глава 18 Экономические критерии эффективности процесса резания
- •Расчет составляющих технологической себестоимости
- •Глава 19 Абразивная обработка
- •Способы шлифования
- •Параметры шлифовальных кругов
- •Глава 20 Обработка резанием неметаллических материалов: дерева, пластмасс, стекла и керамики, камня
- •Угловые значения зубьев пил
- •Стеклодувный способ изготовления художественных изделий
- •Природные каменные материалы Общие сведения
- •Метаморфические породы
- •Контрольные вопросы по курсу резания материалов
- •Библиографический список
Глава 12 Износ и стойкость режущих инструментов
1. Физическая природа изнашивания
В процессе резания контактные поверхности инструмента подвергаются действию чрезвычайно высоких напряжений и температур, что в сочетании с высокими скоростями скольжения приводит к затуплению инструмента и образованию очагов износа. Процесс изнашивания инструмента является нормальным рабочим процессом и протекает при любых условиях резания. Задача состоит в том, чтобы условия резания обеспечивали минимальную (или экономически оправданную) интенсивность этого процесса. Интенсивность изнашивания зависит от большого числа факторов (свойства инструментального и обрабатываемого материалов, режимы резания и т.д.). В зависимости от конкретных условий обработки физическая природа изнашивания контактных поверхностей может определяться либо механическим истиранием, либо физико-химическими процессами, тесно связанными с температурой.
Абразивномеханический износ является результатом царапанья контактных поверхностей инструмента твердыми частицами, входящими в структуру обрабатываемого материала. Такими частицами могут быть зерна карбидов, цементит, силикаты и др. Как правило, чем выше отношение значений твердости инструментального и обрабатываемого материалов, тем ниже интенсивность абразивного износа. Однако с увеличением содержания карбидообразующих элементов и интерметаллических соединений истирающая способность сталей и сплавов увеличивается. Абразивный износ имеет место даже при очень низких температурах. С увеличением температуры его интенсивность увеличивается, что особенно характерно для многофазных инструментальных материалов с металлической связкой. В результате ослабления связки, частицы карбидов твердых сплавов вырываются сходящей стружкой, царапая на своем пути поверхность контакта. Аналогичный эффект производят и срывающиеся частицы нароста, особенно при работе инструментами из быстрорежущей стали.
Адгезионный износ. Контактирующие поверхности стружки и инструмента не являются абсолютно гладкими, поэтому реальный контакт имеет место по отдельным микронеровностям. В результате действия чрезвычайно высоких контактных давлений происходит разрушение окисных пленок и сваривание этих микронеровностей, т.е. образование «мостиков адгезии».
Движение стружки вызывает образование в мостиках сдвигающих напряжений и их разрушение. В зависимости от прочности обрабатываемого и инструментального материалов это разрушение может происходить либо по мостику, или по обрабатываемому материалу, или по материалу инструмента, ослабленному в результате циклического характера возникновения и разрушения мостиков в одной и той же точке. В последнем случае говорят о так называемом усталостном износе. Для возникновения адгезии необходимы определенные условия, характеризующиеся достаточно высокой температурой (около 40 % от температуры плавления обрабатываемого материала) и высоким давлением. Эти условия соответствуют работе с большими сечениями среза на сравнительно малых скоростях резания.
Диффузионный износ. С увеличением температуры резания до 9001000С происходит увеличение активности атомов обрабатываемого и инструментального материалов. Вступление в контакт свежих участков вновь образованных поверхностей при наличии высоких температур и контактных давлений создает условия для взаимной диффузии элементов через площадку контакта. Легирующие элементы (углерод, вольфрам, титан, кобальт) диффундируют в обрабатываемый материал, и контактная твердость поверхности инструмента уменьшается. Это создает благоприятные условия для интенсификации адгезии абразивного истирания.
Химический или окислительный износ. При высоких температурах резания нагретые участки рабочих поверхностей инструмента контактируют с воздухом или СОЖ. В этих условиях некоторые элементы инструментального материала могут вступать в химические реакции с кислородом или компонентами СОЖ, вызывая тем самым химический или окислительный износ.
