Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Генетика экзамен.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
99.72 Кб
Скачать

1 Понятие Генетика, ее значение. Евгенические программы.

Генетика – наука о наследственности и изменчивости , изучающая процессы преемственности жизни на молекулярном, клеточном и популяционном уровнях.

Задачей медицинской генетики является выявление, изучение, профилактика и лечение наследственных болезней, а также разработка путей предотвращения вредного воздействия факторов среды на наследственность человека.

Проблемы евгеники. Евге́ника — учение о селекции применительно к человеку, а также о путях улучшения его наследственных свойств. Учение было призвано бороться с явлениями вырождения в человеческом генофонде.

Нацистские евгенические программы сначала проводились в рамках государственной программы «предотвращения вырождения немецкого народа как представителя арийской рассы », а впоследствии — и на захваченных территориях других стран в рамках национальной рассовой политики:

Программа умерщвления Т4 — уничтожение психических больных и вообще больных более 5 лет, как нетрудоспособных.

Приследование гомосексуальных мужчин

Лебенсбор  — зачатие и воспитание в детских домах детей от служащих СС, прошедших расовый отбор, то есть не содержащих «примесей» еврейской и вообще неарийской крови у их предков.

«Окончательное решение еврейского вопроса» (полное уничтожение евреев) (см. также Холокост ,Айназцгруппа ).

План « Ост» — захват «восточных территорий» и «сокращение» коренного местного населения как относящегося к низшей расе.

Вопрос № 2Наследственность и изменчивость — движущие силы эволюции.      1. Наследственность — свойство организмов передавать особенности строения и жизнедеятельности из поколения в поколение.           2. Материальные основы наследственности —           хромосомы и гены, в которых хранится информация о признаках организма. Передача генов и хромосом из поколения в поколение благодаря размножению. Развитие дочернего организма из одной клетки — зиготы или группы клеток материнского организма в процессе размножения. Локализация в ядрах клеток, участвующих в размножении, генов и хромосом, определяющих сходство дочернего организма с материнским.           3. Наследственность — фактор эволюции, основа сходства родителей и потомства, особей одного вида.           4. Изменчивость — общее свойство всех организмов приобретать новые признаки в процессе индивидуального развития.           5. Виды изменчивости: ненаследственная (мо-дификационная) и наследственная (комбинативная, мутационная).           6. Ненаследственные изменения не связаны с изменениями генов и хромосом, не передаются по наследству, возникают под влиянием факторов внешней среды, исчезают со временем. Проявление сходных модификационных изменений у всех особей вида (например, на холоде у лошадей шерсть становится гуще). Исчезновение модификационных изменений при прекращении действия фактора, вызвавшего данное изменение (загар зимой исчезает, при ухудшении условий содержания и кормления надои молока у коров уменьшаются). Примеры мо-дификационной изменчивости: появление загара летом, увеличение массы тела животных при хорошем кормлении и содержании, развитие определенных групп мышц при занятиях спортом.           7. Наследственные изменения обусловлены изменениями генов и хромосом, передаются по наследству, различаются у особей в пределах одного вида, сохраняются в течение всей жизни особи.           8. Комбинативная изменчивость. Проявление комбинативной изменчивости при скрещивании, ее обусловленность появлением новых комбинаций (сочетаний) генов у потомства. Источники комбина-тивной изменчивости: обмен участками между гомологичными хромосомами, случайное сочетание половых клеток при оплодотворении и образовании зиготы. Разнообразные сочетания генов — причина перекомбинации (нового сочетания) родительских признаков у потомства.           9. Мутации — внезапно возникающие стойкие изменения генов или хромосом. Результат мутаций — появление новых признаков у дочернего организма, которые отсутствовали у его родителей, например коротконогость у овец, отсутствие оперения у кур, альбинизм (отсутствие пигмента). Полезные, вредные и нейтральные мутации. Вред большинства мутаций для организма вследствие проявления новых признаков, не соответствующих среде его обитания.           10. Наследственная изменчивость — фактор эволюции. Появление новых признаков у организмов и их многообразие — материал для действия естественного отбора, сохранения особей с изменениями, соответствующими среде обитания, формирования приспособленности организмов к изменяющимся условиям внешней среды.

3 митоз и мейоз

Митоз Его биологическое значение.

Обеспечивает равномерное распределение хроматина между дочерними клетками. Митоз состоит из кариогенеза – деление ядра, цитогенеза – деление цитоплазмы. Выделяют 2 основные стадии: интерфаза и собственный митоз. В интерфазе происходит накопление белка, РНК и других продуктов; синтезируется ДНК и происходит самоудвоение хромосом; продолжается синтез ДНК и белков и накапливается энергия. Профаза – хромосомы – клубок длинных тонких хроматиновых нитей, разрушается ядрышко, нити веретена прикрепляются к центриолям, которые разделились и находятся на противоположных полюсах клетки, ядерная оболочка клетки разрушается. Метафаза – утолщение, спирализация хромосом, перемещение их в экваториальную полость клетки. Анафаза – разделение, удвоение хромосом на хроматиды, которые расходятся к противоположным полюсам клетки. Телофаза – сестринские хроматиды достигают противоположных полюсов и деспирализуются – 2 дочерних ядра, происходит деление цитоплазмы, образование оболочек клеток. Значение: точное распределение хромосом между 2 дочерними клетками; сохраняется преемственность хромосомного набора в ряду клеточных поколений и полноценность генетической информации каждой клетки.

Мейоз. Его биологическое значение.

Это способ образования половых клеток. Сначала идёт интерфаза, т.е. перед делением каждая хромосома состоит из сестринских хроматид. Профаза сильно растянута во времени. 1. Каждая хромосома состоит из 2 сестринских хроматид. Хромосомы деспирализованы. 2. Гомологичные хромосомы начинают сливаться – конъюгация. 3. Конъюгация завершается, т.е. парные хромосомы соединяются по всей длине. Соединённые в пары хромосомы – биваленты. Начинается кроссинговер в результате изменения последовательности генов. 4 . Хромосомы отталкиваются друг от друга, но удерживаются вместе за счёт перекрёста. 5 . Хромосомы спирализуются, формируется веретено деления, растворяются ядрышки и оболочка ядра, бивалент оказывается в цитоплазме. Метафаза – биваленты выстраиваются по экватору клетки и прикрепляются центромерами к нитям веретена деления. Анафаза – биваленты распадаются на моноваленты, которые по нитям веретена скользят к противоположным полюсам клетки. Телофаза – достигнув полюсов, моноваленты окружают себя ядерной оболочкой, образуются 2 ядра с гаплоидным набором хромосом. Но каждая хромосома состоит из 2 сестринск хроматид. После первого деления следует короткая фаза покоя – интергенез. После этого клетка вступает в эквационное деление. Оно идёт по типу митоза, т.е. в анафазе к полюсам клетки расходятся хроматиды. В результате двух делений из одной материнской клетки с диплоидным набором образуются 4 дочерние с гаплоидным набором хромосом. Значение : образуются гаметы с гаплоидным набором хромосом, возрастает комбинативная изменчивость у потомства (за счёт кроссинговера, за счёт независимой комбинации родительских хромосом в гаметах).

4 Законы Менделя. Хромосомная теория.

  • Мендель изучал, как наследуются отдельные признаки.

  • Мендель выбрал из всех признаков только альтернативные — такие, которые имели у его сортов два чётко различающихся варианта.Такое сознательное сужение задачи исследования позволило чётко установить общие закономерности наследования.

  • Мендель спланировал и провёл масштабный эксперимент. Им было получено от семеноводческих фирм 34 сорта гороха, из которых он отобрал 22 «чистых» (не дающих расщепления по изучаемым признакам при самоопылении) сорта. Затем он проводил искусственную гибридизацию сортов, а полученные гибриды скрещивал между собой. Он изучил наследование семи признаков, изучив в общей сложности около 20 000 гибридов второго поколения. Эксперимент облегчался удачным выбором объекта: горох в норме — самоопылитель, но на нём легко проводить искусственную гибридизацию.

  • Мендель одним из первых в биологии использовал точные количественные методы для анализа данных. На основе знания теории вероятностей он понял необходимость анализа большого числа скрещиваний для устранения роли случайных отклонений.

Закон единообразия гибридов первого поколения (первый закон Менделя) — при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей. Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака (гомозиготность) При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким.

Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак — более сильный, доминантный, всегда подавлял другой, рецессивный. Кодоминирование и неполное доминирование Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования При кодоминировании, в отличие от неполного доминирования, у гетерозигот признаки проявляются одновременно (смешанно). Типичный пример кодоминирования — наследование групп крови системы АВ0 у человека, где А и В — доминантные гены, а 0 — рецессивный. По этой системе генотип 00 определяет первую группу крови, АА и А0 — вторую, ВВ и В0 — третью, а АВ будет определять четвёртую группу крови. Т.о. всё потомство людей с генотипами АА (вторая группа) и ВВ (третья группа) будет иметь генотип АВ (четвёртая группа). Их фенотип не является промежуточным между фенотипами родителей, так как на поверхности эритроцитов присутствуют оба агглютиногена (А и В).

Закон расщепления (второй закон Менделя) — при скрещивании двух гетерозиготных потомков первого поколения между собой, во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

Скрещиванием организмов двух чистых линий, различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть — рецессивный, называется расщеплением. Следовательно, расщепление — это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Закон независимого наследования (третий закон Менделя) — при скрещивании двух особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).  При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга.

Хромосомная теория наследственности — теория, согласно которой передача наследственной информации в ряду поколений связана с передачей хромосом , в которых в определённой и линейной последовательности расположены гены. Эта теория сформулирована в начале XX века. Основной вклад в её создание внесли американский цитолог У. Сеттон, немецкий эмбриолог Т. Бовери и американский генетик Т. Морган

Основные положения хромосомной теории наследственности

  • Гены находятся в хромосомах.

  • Гены расположены в хромосоме в линейной последовательности.

  • Различные хромосомы содержат неодинаковое число генов. Кроме того, набор генов каждой из негомологичных хромосом уникален.

  • Аллельные гены занимают одинаковые локусы в гомологичных хромосомах.

  • Гены одной хромосомы образуют группу сцепления, то есть наследуются преимущественно сцепленно (совместно), благодаря чему происходит сцепленное наследование некоторых признаков. Число групп сцепления равно гаплоидному числу хромосом данного вида (у гомогаметного пола) или больше на 1 (у гетерогаметного пола).

  • Сцепление нарушается в результате кроссинговера, частота которого прямо пропорциональна расстоянию между генами в хромосоме (поэтому сила сцепления находится в обратной зависимости от расстояния между генами).

  • Каждый биологический вид характеризуется определенным набором хромосом — кариотипом.

5 Морфология и классификация хромосом.

Понятие «хромосома» было введено в науку Валдеймером в 1888г. Хромосома – это составная часть клеточного ядра, с помощью которой осуществляется регуляция синтеза белков в клетке, т.е. передача наследственной информации. Хромосомы представлены комплексами нуклеиновых кислот и белка. Функционально хромосома представляет собой нить ДНК с огромной функциональной поверхностью. Количество хромосом постоянно для каждого конкретного вида.

Каждая хромосома образована двумя морфологически идентичными взаимоперевитыми нитями одинакового диаметра – хроматидами. Они тесно соединены центромерой – специальной структурой, управляющей передвижениями хромосом при делении клетки.

В зависимости от положения хромосомы тело хромосомы делится на 2 плеча. Это в свою очередь и определяет 3 основных типа хромосом.

1 тип – Акроцентрическая хромосома.

Ее центромера расположена ближе к концу хромосомы и одно плечо при этом длинное, а другое очень короткое.

2 тип – Субметацентрическая хромосома.

Ее центромера находится ближе к середине хромосомы и делит ее на неравные плечи: короткое и длинное.

3 тип – Метацентрическая хромосома.

Ее центромера находится в самом центре тела хромосомы и делит на равные плечи.

Длина хромосом варьирует в разных клетках от 0,2 до 50 мкм, диаметр – от 0,2 до 2 мкм. Наиболее крупные хромосомы у растений имеют представители семейства лилейных, у животных – некоторые амфибии. Длина большинства хромосом человека составляет 2-6 мкм.

Химический состав хромосом определяется в основном ДНК, а также белками – 5 видами гистоновых и 2 видами негистоновых, а также РНК. Особенности этих химических веществ обуславливают важные функции хромосом:

1.редупликация и передача генетического материала из поколения в поколение;

2.синтез белка и контроль всех биохимических процессов, составляющих основу специфичности развития и дифференциации клеточных систем организма. Кроме того, в составе хромосом обнаружены: сложный остаточный белок, липиды, кальций, магний, железо.

Структурной основой хромосом служит комплекс ДНК – гистон. В хромосоме нить ДНК посредством гистонов упакована в регулярно повторяющиеся структуры с диаметром около 10 нм, называемые нуклеосомами. Поверхность молекул гистонов заряжена положительно, спираль ДНК – отрицательно. Нуклеосомы упакованы в нитевидные структуры, получившие названия фибрилл. Из них построена хроматида.

Главным субстратом, в котором записана генетическая информация организма, являются эухроматиновые районы хромосом. В противоположность ему существует инертный гетерохроматин. В отличие от эухроматина, содержащего уникальные гены, дисбаланс по которым отрицательно отражается на фенотипе организма, изменение в количестве гетерохроматина значительно меньше влияет или совсем не влияет на развитие признаков организма.

Для того, чтобы легче было разобраться в сложном комплексе хромосом, составляющих кариотип, их можно расположить в виде идиограммы, составленной С.Г.Новашиным. В 1гр.1-3 пара хромосом – крупные, метацентрические.

2 гр.4-5 пара хромосом – крупные, субметацентрические.

3 гр.6-12 пара хромосом – средних размеров, субметацентрические.

4 гр.13-15 пара хромосм- средних размеров, акроцентрические.

5 гр.16-18 пара хромосом – короткие, из них 16- метацентрическая, 17 – субметацентрическая, 18 – акроцентрическая.

6 гр.19-20 пара хромосом – короткие, метацентрические.

7 гр.21-22 пара хромосом – очень короткие, акроентрические.

6 Строение ДНК и РНК

Нуклиновые кислоты бывают двух типов: ДНК и РНК

ДНК — дезоксирибонуклеиновая кислота

РНК — рибонуклеиновая кислота

Нуклеотиды — соединения — азотистые основания — мономеры этих аминокислот

Нуклеотиды ДНК: А — аденин, Т — тимин, Ц — цитозин, Г — гуанин Нуклеотиды РНК: А — аденин, У — урацил, Ц — цитозин, Г — гуанин

Первичная структура белка

РНК(Азотистое основание(А,Г,Ц,У)Углевод-рибоза,Остаток-ФК)

ДНК(Азотистое основание(А,Г,Ц,Т)Углевод-дезоксирибоза,Остаток-ФК)

Вторичная структура-то форма молекул нуклеиновых кислот

Основные функции нуклеиновых кислот — в хранении, реализации и передаче наследственной информации, «записанной» в молекулах  в виде последовательности определенных нуклеотидов.

  • ДНК отвечает именно за «идентификацию» и передачу наследственной информации,

  • функции РНК немного отличаются — она отвечает за производство белка — в организмах — эукариотах и бактерий и за наследственную информацию — в клетках некоторых вирусов (РНК-вирусы)

7 Понятие ген, хромосома , геном.

Ген (др.-греч. γένος — род) — структурная и функциональная единица наследственности живых организмов. Ген представляет собой участок ДНК, задающий последовательность определённого полипептида либо функциональной РНК. Гены (точнее, аллели генов) определяют наследственные признаки организмов, передающиеся от родителей потомству при размножении. Среди некоторых организмов, в основном одноклеточных, встречается горизонтальный перенос генов, не связанный с размножением.

Хромосо́мы (др.-греч. χρῶμα — цвет и σῶμα — тело) — нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена бо́льшая часть наследственной информации и которые предназначены для её хранения, реализации и передачи. Хромосомы чётко различимы в световом микроскопе только в период митотического или мейотического деления клетки. Набор всех хромосом клетки, называемый кариотипом, является видоспецифичным признаком, для которого характерен относительно низкий уровень индивидуальной изменчивости[

Гено́м — совокупность наследственного материала, заключенного в клетке организма[1]. Геном содержит биологическую информацию, необходимую для построения и поддержания организма. Большинство геномов, в том числе геном человека и геномы всех остальных клеточных форм жизни, построены из ДНК, однако некоторые вирусы имеют геномы из РНК

8 Ядерная и цитоплазматическая наследственность. Наследственность цитоплазматическая (внеядерная, нехромосомная, плазматическая), преемственность материальных структур и функциональных свойств организма, которые определяются и передаются факторами, расположенными в цитоплазме. Совокупность этих факторов — плазмагенов, или внеядерных генов, составляет плазмон (подобно тому, как совокупность хромосомных генов — геном). Плазмагены находятся в самовоспроизводящихся органеллах клетки — митохондриях и пластидах (в том числе хлоропластах и др.). Указанием на существование Н. ц. служат, прежде всего, наблюдаемые при скрещиваниях отклонения от расщеплений признаков, ожидаемых на основе Менделя законов. Цитоплазматические элементы, несущие плазмагены, расщепляются по дочерним клеткам беспорядочно, а не закономерно, как гены, локализованные в хромосомах. Плазмагены передаются главным образом через женскую половую клетку (яйцеклетку), так как мужская половая клетка (спермий) почти не содержит цитоплазмы (что, однако, не исключает передачи плазмагенов через мужские гаметы). Поэтому изучение Н. ц. ведётся с использованием специальных схем скрещивания, при которых данный организм (или группа) используется и как материнская, и как отцовская форма (реципрокное скрещивание). У растений и животных различия, обусловленные Н. ц., сводятся в основном к преобладанию материнских признаков и проявлению определённого фенотипа при одном направлении скрещивания и его утрате при другом. Различают хромосомную и внехромосомную Н. Хромосомная Н. связана с распределением носителей наследственности (генов) в хромосомах. Передача признаков потомству особенно четко прослеживается при наследовании менделирующих признаков, т.е. таких наследственных признаков, которые в потомстве, расщепляются по моногенному типу наследования в соответствии с законами Менделя — эмпирическими правилами наследования, устанавливающими численные соотношения, в которых отдельные признаки и их сочетания проявляются в гибридном потомстве при половом размножении. Внехромосомная, или цитоплазматическая, Н. заключается в наследовании признаков, которые контролируются факторами, локализованными у животных организмов в митохондриях, у растений — в митохондриях и пластидах, у бактерий — вплазмидах. Цитоплазматические элементы, обладающие свойством передачи наследственной информации, распределяются между дочерними клетками случайно, поэтому четкого менделевского расщепления в этих случаях не наблюдается. Все системы внехромосомной Н. взаимодействуют с хромосомными генами или их продуктами. Закономерности наследования признаков контролируемых ядерными генами. Гены, расположенные в ядерных структурах — хромосомах, закономерно распределяются между дочерними клетками благодаря механизму митоза, который обеспечивает постоянную структуру кариотипа в ряду клеточных поколений Мейоз и оплодотворение обеспечивают сохранение постоянного кариотипа в ряду поколений организмов, размножающихся половым путем .В результате набор генов, заключенный в кариотипе, также остается постоянным в ряду поколений клеток и организмов. Закономерное поведение хромосом в митозе, мейозе и при оплодотворении обусловливает закономерности наследования признаков, контролируемых ядерными генами. Закономерности наследования признаков контролируемых внеядерными генами. Наличие некоторого количества наследственного материала в цитоплазме в виде кольцевых молекул ДНК митохондрий и пластид, а также других внеядерных генетических элементов дает основание специально остановиться на их участии в формировании фенотипа в процессе индивидуального развития. Цитоплазматические гены не подчиняются менделевским закономерностям наследования, которые определяются поведением хромосом при митозе, мейозе и оплодотворении. В связи с тем что организм, образуемый вследствие оплодотворения, получает цитоплазматические структуры главным образом с яйцеклеткой, цитоплазматическое наследование признаков осуществляется по материнской линии. Такой тип наследования был впервые описан в 1908 г. К. Корренсом в отношении признака пестрых листьев у некоторых растений . Как было установлено позднее, развитие этого признака обусловлено мутацией, возникающей в ДНК хлоропластов и нарушающей синтез хлорофилла в них. Размножение в клетках нормальных (зеленых) и мутантных (бесцветных) пластид и последующее случайное распределение их между дочерними клетками приводят к появлению отдельных клеток, совершенно лишенных нормальных пластид. Потомство этих клеток образует обесцвеченные участки на листьях. Фенотип потомства, таким образом, зависит от фенотипа материнского растения. У растения с зелеными листьями потомство абсолютно нормально. У растения с бесцветными листьями потомство имеет такой же фенотип. У материнского растения с пестрыми листьями потомки могут иметь все описанные фенотипы по данному признаку. При этом внешний вид потомства не зависит от признака отцовского растения. Другим примером цитоплазматического наследования признаков могут служить некоторые патологические состояния, описанные у человека, причиной которых является первичный дефект митохондриальной ДНК (мтДНК). Наряду с описанными выше типами и вариантами наследования ядерных и цитоплазматических генов в последнее время внимание ученых привлекает нетрадиционное наследование некоторых признаков и патологических состояний у человека.

9 Взаимодействие гена и окружающей среды  — это процесс, в ходе которого на основе определённого генотипа и воздействия фактора среды проявляется фенотип. В узком смысле, взаимодействие гена и окружающей среды — сочетание двух факторов риска (генетического и средового), приводящее к резкому изменению фенотипа, отличающемуся от привычного. Представляет собой интерес как способ описания нелинейных изменений фенотипа, качественных скачков в переходе от нормального (здорового) фенотипа к патологическому, которые невозможно объяснить простым сложением действия генетического фактора (варианта гена) и действием среды в отсутствии этого фактора.

По происхождению мутагены классифицируют на эндогенные, образующиеся в процессе жизнедеятельности организма и экзогенные – все прочие факторы, в том числе и условия окружающей среды.

По природе возникновения мутагены классифицирует на физические, химические и биологические.

Физическими мутагенами называются любые физические воздействия на живые организмы, которые оказывают либо прямое влияние на ДНК или вирусную РНК, либо опосредованное влияние через системы репликации, репарации, рекомбинации. Первые физические мутагены, открытые учеными,- это разные виды излучений: ионизирующее излучение, радиоактивный распад, ультрафиолетовое излучение. Физические мутагены и их действие сильно зависит от предварительной эволюции организма. К постоянно действующим мутагенам виды выработали устойчивость. Физический мутагенез может не регистрироваться из-за быстрой гибели мутантных организмов.

К химическим мутагенам относятся многие химические соединения самого разнообразного строения. Химические мутагены делят на мутагены прямого действия, и мутагены непрямого действия. Мишенью действия мутагенов в клетке являются ДНК и некоторые белки. Ряд мутагенов вызывают мутации, не связываясь ковалентно с ДНК. В этом случае матричный синтез на ДНК протекает с ошибками. В синтезируемой нити ДНК оказывается на один нуклеотид больше или меньше обычного и возникают мутации.

К биологическим мутагенам относят ДНК- и РНК-содержащие вирусы, некоторые полипептиды и белки, а также препараты некоторых ДНК и определенные плазмиды.

Механизмы образования мутаций при действии различных биологических факторов не вполне ясны, однако агенты, содержащие нуклеиновые кислоты, могут вызывать нарушение процессов рекомбинации, что приводит к возникновению мутаций. Биологические мутагены:

- специфические последовательности ДНК – транспозоны;

- некоторые вирусы (вирус кори, краснухи, гриппа);

- продукты обмена веществ (продукты окисления липидов);

Транспозоны – один из классов мобильных элементов генома которые, встраиваясь в геном, могут вызывать мутации, в том числе и такие значительные как хромосомные перестройки.

Они играют важную роль в процессах переноса лекарственной устойчивости среди микроорганизмов, рекомбинации, и обмена генетическим материалом между различными видами как в природе так и в ходе генно-инженерных исследований.

Вопрос № 10 Изменчивость и ее виды Изменчивость – это способность организмов приобретать отличия от других особей своего вида. Бывает трех видов – мутации, комбинации и модификации. МУТАЦИОННАЯ ИЗМЕНЧИВОСТЬ – это изменения ДНК клетки (изменение строения и количества хромосом). Возникают под действием ультрафиолета, радиации (рентгеновских лучей) и т.п. Передаются по наследству, служат материалом для естественного отбора (мутационный процесс – одна из движущих сил эволюции). Виды мутаций. КОМБИНАТИВНАЯ ИЗМЕНЧИВОСТЬ возникает при перекомбинации (перемешивании) генов отца и матери. Источники: 1) Кроссинговер при мейозе (гомологичные хромосомы тесно сближаются и меняются участками). 2) Независимое расхождение хромосом при мейозе. 3) Случайное слияние гамет при оплодотворении. Пример: у цветка ночная красавица есть ген красного цвета лепестков А, и ген белого цвета а. Организм Аа имеет розовый цвет лепестков, этот признак возникает при сочетании (комбинации) красного и белого гена. МОДИФИКАЦИОННАЯ ИЗМЕНЧИВОСТЬ возникает под действием окружающей среды. По наследству не передаётся, потому что при модификациях меняется только фенотип (признак), а генотип не меняется. Отличия от мутаций. Примеры: 1) Можно разрезать корень одуванчика на 2 части и посадить их в разные условия; вырастут разные на вид растения, хотя генотип у них одинаковый. 2) Если человек будет находится на солнце, то он загорит; если будет заниматься физкультурой, то увеличит свои мышцы. 3) При хорошем содержании куры увеличивают яйценоскость, коровы дают больше молока. Модификационная изменчивость не безгранична, например, белый человек никогда не сможет загореть до состояния негра. Границы, внутри которых могут происходить модификационные изменения, называются «норма реакции», они заложены в генотипе и передаются по наследству.

11 вопрос: Генные хромосомные и геномные мутации.

По уровню нарушения наследственного материала мутации классифицируются на генные, хромосомные и геномные.

Генные мутации связаны с изменением структуры гена (структуры молекулы ДНК). К нарушению структуры гена могут привести: а) замена, б) вставка, в) выпадение нуклеотида. При замене нуклеотида в молекуле ДНК происходит замена одной аминокислоты в белковой молекуле. Это ведет к синтезу белка с измененными свойствами. Вставка или выпадение нуклеотида ведет к изменению всей последовательности аминокислот в молекуле белка. Генные мутации являются причиной развития многих болезней обмена веществ (фенилкетонурия, серповидноклеточная анемия, альбинизм).

Хромосомные мутации связаны с изменением структуры хромосом. Такие как:

а) Делеция - выпадение участка хромосомы.

б) Дупликация - удвоение участка хромосомы.

в) Инверсия - поворот участка хромосомы на 180°.

Геномные мутации связаны с изменением числа хромосом в кариотипе. Геном - это содержание наследственного материала в гаплоидном наборе хромосом. Выделяют:

а) полиплоидия - это кратное гаплоидному набору увеличение числа хромосом (3n, 4n, 6n и т.д.)

б) гетероплоидия - это изменение числа хромосом некратное гаплоидному (2n+1 - трисомия, 2n-1 - моносомия). Нарушения расхождения хромосом во время мейоза приводит к изменению числа хромосом у организма. Так,

- синдром Дауна – это трисомия по 21 хромосоме;

- синдром Шерешевского-Тернера - моносомия по Х-хромосоме: Х0 у женщины;

- синдром Клайнфельтера - трисомия по половым хромосомам: лишняя Х-хромосома у мужчин - ХХУ).

Гетероплоидии приводят к нарушению хода нормального развития организма, изменениям в его строении и снижению жизнеспособности.