Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛЕКЦИЯ №7.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
241.15 Кб
Скачать

Лекция №7 позиционные задачи.

  1. ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ТОЧЕК.

  2. ВЗАИМНОЕ ПОЛОЖЕНИЕ ТОЧКИ И ПРЯМОЙ.

  3. ВЗАИМНОЕ ПОЛОЖЕНИЕ ТОЧКИ И ПЛОСКОСТИ.

  4. ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ПРЯМЫХ.

Позиционные задачи – это задачи, в которых определяется взаимное расположение различных геометрических фигур относительно друг друга.

Различают прямые и обратные позиционные задачи:

  • прямые – задачи на взаимопринадлежность (построение точки на линии или поверхности, проведение линии на поверхности или поверхности через заданные линии, задачи на пересечение);

  • обратные – в которых определяется взаимное расположение точек, линий, плоскостей.

19. Взаимное положение двух точек

Рассмотрим возможные варианты взаимного расположения двух точек (рисунок 7-1).

а) б) в) г)

А=В А А=В А

∆Н

В В

∆р

В А

А=В А=В А ∆f В

Рисунок 7-1

а) две точки в пространстве могут либо совпадать, либо не совпадать. Если две точки совпадают, то на видах спереди и сверху их проекции совпадают (рисунок 7-1а).

Если же точки не совпадают, то их проекции не совпадают либо на виде спереди (7-1б), либо на виде сверху (7-1в), либо на двух видах одновременно (7-1г).

б) Точки, которые совпадают на виде сверху (на горизонтальной проекции) называют горизонтально-конкурирующими. На рисунке7-1б точка А находится выше точки В и точно над ней, поэтому на виде спереди обе точки видимы, а на виде сверху видна точка А, имеющая большую высоту.

в) Точки, которые совпадают на виде спереди (на фронтальной проекции) называют фронтально-конкурирующими. На виде сверху обе точки видимы, а на виде спереди видна та из них, что ближе к наблюдателю, т.е. точка А.

г) По рисунку 7-1г определяем, что точка А выше точки В на величину ΔН; по виду сверху отмечаем, что от наблюдателя точка А дальше точки В на величину Δf ; на обоих видах определяется, что точка А левее точки В на величину Δр.

20. Взаимное расположение точки и прямой

Т очка может находиться либо на прямой, либо вне её.

а) Если точка находится на прямой, тогда на основании свойства принадлежности её проекции будут принадлежать проекциям прямой – точка А (рисунок 7-2);

б) Если же точка расположена вне прямой, то тогда хотя бы на одном из видов точка не будет находиться на прямой:

  • точка В на виде сверху не лежит на прямой l, а находится ближе, чем фронтально-конкурирующая с ней точка, отмеченная крестиком; следовательно точка В находится перед прямой l;

  • точка С, как это следует из вида спереди, находится ниже прямой l, т.к. она расположена ниже горизонтально-конкурирующей с ней точки, отмеченной крестиком и лежащей на прямой;

  • анализируя положение точки D относительно прямой l, приходим к выводу, что точка D находится над прямой l, что определяется по положению точки D на виде спереди. По виду сверху отмечаем, что точка D находится за прямой l.

Определить взаимное положение точки и прямой профильного положения р по двум видам не представляется возможным, т.к. такая прямая на видах спереди и сверху совпадает с линиями связи по направлению (рисунок 7-3).

Получить ответ можно с помощью построения профильной проекции (вида слева).

Т

Рисунок 7-3

ак по виду слева определяем, что т. М находится перед прямой (Δf) и над ней (ΔН), т.к. она лежит ближе фронтально-конкурирующей и выше горизонтально -конкурирующих точек, отмеченных крестиками.

Точка N находится ниже (под) прямой l и за (дальше) неё.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]