- •I. Оксидативный стресс.
- •II. Активные формы кислорода.
- •III. Неферментативные пути образования афк. Химизм процессов сро.
- •IV. Ферментативные пути образования активных форм кислорода
- •Микросомальные монооксигеназы.
- •Ксантиноксидоредуктаза.
- •Nadph-оксидаза.
- •5. Активные формы хлора и азота. Ферментативные реакции их образования
- •Миелопероксидаза.
- •V. Механизмы повреждающего действия окислительного стресса: повреждение белков, нуклеиновых кислот, деградация мембранных фосфолипидов, образование межмолекулярных комплексов.
- •Повреждение днк
- •Повреждение белков
- •Перекисное окисление липидов
- •Образование комплексов.
- •VI. Антиоксидантная система организма, роль, компоненты
- •VII. Антиоксиданты неферментативной природы
- •Аскорбиновая кислота
- •Токоферол
- •Каротиноиды
- •Коэнзим q10
- •Тиоредоксин
- •XI. Ферментные системы антиоксидантной защиты Супероксиддисмутаза
- •Каталаза
- •Глутатион-s-трансферазы.
- •Церулоплазмин
- •Трансферрин
- •VIII. Свободнорадикальное окисление, фагоцитоз и воспаление
- •IX. Дополнительный материал Окислительный стресс и апоптоз
- •Окислительный стресс и канцерогенез
- •Свободные радикалы при ишемии-реперфузии повреждения миокарда.
- •Вопросы для самоконтроля
- •Литература
Глутатион-s-трансферазы.
Глутатион-S-трансферазы представлены суперсемейством мультифункциональных изоферментов, которые способствуют процессам детоксикации, используя различные механизмы, включая: 1) каталитическую инактивацию широкого спектра ксенобиотиков через конъюгацию с GSH; 2) некаталитическое связывание определенных ксенобиотиков; 3) восстановление липид- и ДНК-гидропероксидов через экспрессию активности GSH-пероксидазы. Кроме того, глутатион-S-трансферазы изомеризуют некоторые стероиды и простагландины, участвуют в метаболизме других эндогенных веществ. В частности, GST могут вовлекаться в синтез лейкотриенов, поддерживая процесс воспаления.
Восстановленный глутатион (GSH) – низкомолекулярный тиол, преобладающий (90–95%) во многих растительных, микробных и во всех животных клетках, в которых его молярная концентрация (1–10 ммоль) выше, чем концентрация большинства органических веществ. GSH представляет собой трипептид (L-гамма-глутамил-L-цистеинилглицин), состоящий из глицина, цистеина и глутаминовой кислоты, которая связана с цистеином через карбоксильную группу.
В отличие от ГПО GST не способна восстанавливать перекись водорода, но подобно мономерной ГПО весьма эффективно восстанавливает гидропероксиацилы мембранных фосфолипидов, а также подобно тетрамерной ГПО восстанавливает свободные гидроперекиси полиненасыщенных жирных кислот, образовавшиеся в результате гидролиза окисленных фосфолипидов фосфолипазой А2. Восстановление гидроперекисей полиеновых жирных кислот как свободных, так и находящихся в структуре мембранных фосфолипидов протекает по схеме:
ROOH
+ GSH GST
ROH + G-SOH
Нестойкое сульфеновое производное глутатиона (G-SOH) способно взаимодействовать еще с одной молекулой глутатитона с образование дисульфида окисленного глутатиона:
G-SOH + G-SH GS-SН + H2O,
далее действует глутатионредуктаза.
GST не конкурентна в своих действиях ГПО. Полагают, что в нормальных физиологических условиях, когда фосфолипаза А2 малоактивна, контроль за уровнем липопероксидов в клетке осуществляется преимущественно GST, способной напрямую восстанавливать мембранные фосфолипиды. В условиях патологии, когда вследствие ацидоза и повышения уровня внутриклеточного Са2+ активируется фосфолипаза А2 и отщепляются свободные гидроперекиси полиеновых жирных кислот, действует «классическая» тетрамерная ГПО. Таким образом, глутатионзависимые антиоксидантные ферменты – ГПО и GST играют важную роль в репарации мембранных структур после их свободнорадикального повреждения. Кроме этого, установлено, что GST также способствует конъюгированию с G-SH токсичных конечных продуктов ПОЛ, что способствует их выведению из организма.
Рис.13. Схема работы ферментативной антиоксидантной системы при восстановлении кислорода до воды.
Церулоплазмин
Церулоплазмин — энзим плазмы крови гликопротеидной природы, прочно связывающий до шести атомов меди (Cu2+), что обеспечивает секвестрирование до 95% ионов данного металла из их общего количества в крови. Церулоплазмин (часто обозначается как ферроксидаза) с высокой скоростью катализирует окисление ионов двухвалентного железа:
ЦП–Cu2+ + 4Fe2+ → ЦП–Cu+ + 4Fe3+
ЦП–Cu+ + O2 + 4H+ → ЦП–Cu2+ + 2H2O
Ионы металлов переменной валентности способны эффективно катализировать продукцию прооксидантов, в частности гидроксильного радикала (∙OH). Для обеспечения адекватной антиоксидантной защиты организма чрезвычайно значимо удержание их уровня в биосредах в пределах безопасных концентраций и в окисленном состоянии.
Способствуя встраиванию в ферритин окисленного Fe3+, ЦП ингибирует супероксидное и ферритин-зависимое перекисное окисление липидов. Описанные выше свойства ЦП послужили основой для объяснения его противовоспалительной активности, что вместе с быстрым возрастанием концентрации ЦП (в 2-3 раза) в русле крови уже в начале воспалительной реакции позволяет причислить его к белкам “острой фазы”.
