- •Конъюгация у бактерий
- •Содержание Механизм
- •Ход процесса
- •Конъюгация между различными видами
- •Трансформация у прокариот
- •Трансформация у эукариот
- •Поведение фагов в бактериальной клетке
- •Перенос фрагментов днк бактерии Общая (неспецифическая) трансдукция
- •Специфическая трансдукция
- •Препрофаза
- •Профаза
- •Прометафаза
- •Анафаза
- •Телофаза
- •Цитокинез
- •Естественный гермафродитизм
- •Синхронный гермафродитизм
- •Последовательный гермафродитизм (дихогамия)
- •Классификации партеногенеза
- •Распространенность у животных у членистоногих
- •Муравьи
- •Термиты
- •У позвоночных
- •У растений
- •Индуцированный «партеногенез» млекопитающих
- •Конъюгативные плазмиды
- •Функции плазмид
- •Типы и механизмы аутофагии
- •Регуляция аутофагии
- •Значение аутофагии при нормальных и патологических процессах
- •Строение
Термиты
Бесполое размножение в виде телитокического партеногенеза обнаружено у 7 видов термитов, в том числе: Reticulitermes speratus, Zootermopsis angusticollis, Kalotermes flavicollis, Bifiditermes beesoni.
У позвоночных
Партеногенез редок у позвоночных и встречается примерно у 70 видов, что составляет 0,1 % всех позвоночных животных. Например, существует несколько видов ящериц, в естественных условиях размножающихся партеногенезом (скальные ящерицы, комодские вараны). Партеногенетические популяции также найдены и у некоторых видов рыб, земноводных, птиц (в том числе кур). Случаи партеногенеза пока не известны только среди млекопитающих.
Партеногенез у комодских варанов возможен потому, что оогенез сопровождается развитием полоцита (полярного тельца), содержащего удвоенную копию ДНК яйца; полоцит при этом не погибает и выступает в качестве спермы, превращая яйцеклетку в эмбрион.
У растений
Аналогичный процесс у растений называется апомиксис. Он может представлять собой вегетативное размножение, или размножение семенами, возникшими без оплодотворения: либо в результате разновидности мейоза, не уменьшающей число хромосом в два раза, либо из диплоидных клеток семязачатка. Так как у многих растений существует особый механизм: двойное оплодотворение, то у некоторых из них (например, у нескольких видов лапчатки) возможна псевдогамия — когда семена получаются с зародышем, развивающимся из неоплодотворённой яйцеклетки, но содержат триплоидный эндосперм, возникший в результате опыления и последующего тройного слияния.
Индуцированный «партеногенез» млекопитающих
В начале 2000 гг. было показано, что обработкой in vitro ооцитов млекопитающих (крыс, макак, а затем и человека) либо предотвращением отделения второго полярного тельца при мейозе возможно индуцировать партеногенез, при этом в культуре развитие можно довести до стадии бластоцист. Полученные таким образом бластоцисты человека потенциально являются источником плюрипотентных стволовых клеток, которые могут быть использованы в клеточной терапии.
В 2004 году в Японии слиянием двух гаплоидных ооцитов, взятых у разных особей мыши, удалось создать жизнеспособную диплоидную клетку, деление которой привело к формированию жизнеспособного эмбриона, который, пройдя стадию бластоцисты, развился в жизнеспособную взрослую особь. Предполагается, что этот эксперимент подтверждает участие геномного импринтинга в гибели эмбрионов, образующихся из ооцитов, полученных от одной особи, на бластоцистарной стадии.
Хромосомная ДНК (1) и плазмиды (2) в бактериальной клетке
Плазми́ды — небольшие молекулы ДНК, физически отдельные от геномных хромосом и способные реплицироваться автономно. Как правило, плазмиды встречаются у бактерий и представляют собой двухцепочечные кольцевые молекулы, но изредка плазмиды встречаются также у архей и эукариот.
В природе плазмиды обычно содержат гены, повышающие устойчивость бактерии к неблагоприятным внешним факторам (в т. ч. устойчивость к антибиотикам), нередко они могут передаваться от одной бактерии к другой (иногда даже к бактерии другого вида) и, таким образом, служат средством горизонтального переноса генов.
Попадание плазмиды в клетку может осуществляться двумя путями: либо при непосредственном контакте клетки-хозяина с другой клеткой в процессе конъюгации, либо путём трансформации, то есть искусственного введения в клетку плазмиды, которому предшествует изменение экспрессии определённого гена клетки-хозяина (приобретение клеткой компетентности).
Искусственные плазмиды используются как векторы в клонировании ДНК, причём благодаря их способности к репликации обеспечивается возможность репликации рекомбинантной ДНК в клетке-хозяине.
Размер плазмид варьирует от 1 до свыше 1000 тысяч пар оснований[1]. Количество идентичных плазмид в пределах одной клетки изменяется от одной до тысяч в зависимости от дополнительных обстоятельств. Плазмиды можно считать видом мобильных генетических элементов, поскольку они часто передаются при конъюгации — механизме горизонтального переноса генов.
Впервые термин «плазмида» (англ. plasmid) был предложен американским молекулярным биологом Джошуа Ледербергом в 1952 году
