- •2. Ферменты, понятие, сходства и отличия ферментов и неорганических катализаторов
- •3. Химическая природа ферментов
- •5. 1. Зависимость скорости реакции от концентрации субстрата
- •2. Зависимость от концентрации фермента
- •3. Зависимость скорости реакции от температуры
- •4. Зависимость скорости реакции от рН
- •Термолабильность ферментов
- •10. Механизм действия ферментов
- •11. Номенклатура и классификация ферментов
- •12. Единицы ферментативной активности
- •14. Мультиферментные комплексы
- •Строение мульферментного комплекса
- •15. Энзимодиагностика
- •18. Иммобилизованные ферменты Общая характеристика
- •Носители для иммобилизованных ферментов
- •Перспективы применения иммобилизованных ферментов в пищевой промышленности
- •Применение иммобилизованных ферментов в медицине
- •Использование иммобилизованных ферментов для синтеза аминокислот
- •Синтез аналогов пенициллина
- •Что такое иммуноферментный анализ
- •Как проводится исследование методом ифа
- •Какие инфекции можно выявить методом ифа
- •Какая роль метод ифа в диагностике сифилиса
10. Механизм действия ферментов
Механизм действия простого и сложного ферментов одинаков, так как активные центры в их молекулах выполняют сходные функции.
В основе действия ферментов лежит их способность ускорять реакции за счет уменьшения энергии активации субстрата. Ферменты деформируют электоронные оболочки субстратов, облегчая таким образом взаимодействие между ними. Энергитя, необходимая для того, чтобы привести молекулы в активное состояние, называется энергией активации. Роль обычного катализатора (и еще в большей мере биологического) состоит в том, что он снижает энергию активации субстрата.
Основы механизма действия ферментов были изучены в начале XX в. В 1902 г. английский химик А.Браун высказал предположение о том, что фермент, воздействуя на субстрат, должен образовать с ним промежуточный фермент — субстратный комплекс. Одновременно и независимо от А. Брауна это же предположение высказал французский ученый В. Анри. В 1913 г. Л. Михэлис и М. Ментэн подтвердили и развили представления о механизме действия ферментов, который можно представить в виде схемы:
Е [E-S]'+ S [E-S]' [Е-Р] Е + Р,
где Е — фермент, S — субстрат, Р — продукт.
На первой стадии ферментативного катализа происходит образование фермент-субстратного комплекса, где фермент и субстрат могут быть связаны ионной, ковалентной или иной связью. Образование комплекса E-S происходит практически мгновенно.
На второй стадии субстрат под воздействием связанного с ним фермента видоизменяется и становится более доступным для соответствующей химической реакции. Эта стадия определяет скорость всего процесса. На этих стадиях ферментативного катализа происходят неоднократные изменения третичной структуры белка фермента, приводящие к последовательному сближениюс субстратом и ориентации в пространстве тех активных групп, которые взаимодействуют друг с другом на различных этапах преобразования субстратов
На третьей стадии происходит химическая реакция, в результате которой образуется комплекс продукта реакции с ферментом.
Заключительным процессом является высвобождение продукта реакции из комплекса.
В организме превращение веществ до конечных продуктов происходит в несколько этапов, каждый из которых катализируется отдельным ферментом. Сумма энергии активации промежуточных реакций ниже энергии активации, необходимой для одновременного расщепления субстрата.
По механизму действия ацетилхолинэстераза сходна с химотрипсином.
Ацетилхолин взаимодействует со специфическим остатком серина в активном центре ацетилхолин-эстеразы с образованием в качестве промежуточного продукта ковалентно связанного ацетил—фермента, а холин высвобождается. Ацетил—фермент далее вступает во взаимодействие с молекулой воды, что приводит к образованию ацетата и регенерированного свободного фермента (рис. 37.12).[ Конкурентные вигибиторы, как правило, имеют структурное сходство с субстратами и поэтому пшроко используются при исследовании механизма действия различных ферментов. Классическим примером конкурентного торможения служит ингибирование сукцинатдегидрогеназы малонатом и другими дакарбоновыми кислотами. В этом отношении детально проанализировано. влияние различных ингибиторов на ацетилхолинэстеразу. В зависимости от свойств фермента механизм действия гистидин-сериновой пары в активных центрах гидролаз может изменяться довольно сильно. Интересна в этом отношении ацетилхолинэстераза (КФ 3.1.1.7), в активном центре которой при катализе осуществляется обратимый перенос заряда с участием фенольной группы тирозина. Ацетилхолин является медиатором при передаче нервного импульса. В ответ на выделение ацетилхолина окончанием нервного волокна следует реакция возбуждения нервной клетки. После передачи нервного импульса ацетилхолин разрушается ферментом, который гидролизует 1—2 мкг ацетилхолина за 0,1—0,2 мс. Существует два типа таких ферментов ацетилхолинэстеразы и холинэстеразы. Первые ранее назывались истинными холинэстеразами, вторые — псевдохолинэстеразами, или ложными холинэстеразами, но эти названия менее удачны, чем настоящие. Ацетилхолинэстераза встречается преимущественно в нервной ткани и эритроцитах большинства видов животных, холинэстераза преобладает в плазме крови животных. Эти ферменты относятся к простым белкам. Механизм действия ацетилхолинэстеразы подробно исследован. Ведущую роль в каталической активности ацетилхолинэстеразы, как и иных эстераз, играет гистидин—сериновая пара, а также радикалы дикарбоновых кислот и тирозина.
