Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПР.Р 1 - 11.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
1.09 Mб
Скачать

Практическая работа № 4 Преобразование и вычисление числовых значений алгебраических выражений, содержащих степени с рациональными показателями

Цель: научиться применять свойства степени для преобразования степенных выражений.

Средства обучения:

  • методические рекомендации к практической работе № 4.

Виды самостоятельной работы:

  • вычисление значения выражения с применением свойств степени;

  • решение уравнений;

  • упрощение буквенных выражений с применением свойств степени.

Краткая теоретическая справка

Степенью числа a с натуральным показателем n, большим 1, называется произведение n множителей, каждый из которых равен a:

.

Если , ( ), то .

Если , то .

Свойства степени

1. ;

2. ;

3. ;

4. ;

5. .

Практические задания

1. Найти значение выражения, используя свойства степени.

2. Решите уравнение.

3. Упростить выражение.

Для аудиторной работы

1. а) ; б) ; в) .

2. а) ; б) .

3. а) ; б) ; в) .

Для самостоятельной работы

Вариант 1

1. а) ; б) ; в) .

2. а) ; б) .

3. а) ; б) ; в) .

Вариант 2

1. а) ; б) ; в) .

2. а) ; б) .

3. а) ; б) ; в) .

Вариант 3

1. а) ; б) ; в) .

2. а) ; б) .

3. а) ; б) ; в) .

Вариант 4

1. а) ; б) ; в) .

2. а) ; б) .

3. а) ; б) ; в) .

Требования к отчёту:

1. После выполнения работы студент обязан продемонстрировать преподавателю выполненные задания 1-3.

2. Предоставить отчёт о выполненной работе, содержащей:

- порядковый номер и наименование практической работы;

- цель практической работы;

- ход выполнения работы;

- ответы на контрольные вопросы;

- вывод о выполненном задании.

Контрольные вопросы

1. Выражение какого вида называют степенью?

2. Что понимают под , где n – натуральное число?

3. Что понимают под , где и n – натуральное число?

Сделайте вывод о том, какие математические навыки вы приобрели на этом занятии.

Практическая работа № 5 Преобразование и вычисление числовых значений алгебраических выражений, содержащих корни n-ой степени ( )

Цель: научиться выполнять преобразования и находить значения выражений, содержащих корни n-й степени.

Средства обучения:

  • методические рекомендации к практической работе № 5.

Виды самостоятельной работы:

  • вычисление значения корня n-й степени;

  • извлечение корня из произведения и частного;

  • извлечение корня из корня;

  • возведение корня в степень.

Краткая теоретическая справка

Корнем n-й степени из числа называется такое число, n-я степень которого равна .

Обозначается , где - подкоренное выражение (или число), n - показатель корня ( ; ).

По определению , если или .

Основные свойства арифметического корня n-й степени

1) Корень из произведения:

,

где .

2) Корень из дроби:

,

где .

3) Возведение корня в степень:

,

где .

4) Извлечение корня из корня:

,

где .

5) Если показатели корня и подкоренного выражения умножить или разделить на одно и то же натуральное число, то значение корня не изменится. .

Практические задания

1. Найти значение выражения, используя свойства корня из произведения и из частного.

2. Вычислить, используя свойства извлечения корня из корня.

3. Преобразовать и найти значение выражения с применением свойства возведения корня в степень.

4. Решить уравнение.

Для аудиторной работы

1. а) ; б) ; в) ; г) .

2. а) ; б) .

3. а) ; б) .

4. а) ; б) .

Для самостоятельной работы

Вариант 1

1. а) ; б) ; в) ; г) .

2. а) ; б) .

3. а) ; б) .

4. а) ; б) .

Вариант 2

1. а) ; б) ; в) ; г) .

2. а) ; б) .

3. а) ; б) .

4. а) ; б) .

Вариант 3

1. а) ; б) ; в) ; г) .

2. а) ; б) .

3. а) ; б) .

4. а) ; б) .

Вариант 4

1. а) ; б) ; в) ; г) .

2. а) ; б) .

3. а) ; б) .

4. а) ; б)

Требования к отчёту:

1. После выполнения работы студент обязан продемонстрировать преподавателю выполненные задания 1-4.

2. Предоставить отчёт о выполненной работе, содержащей:

- порядковый номер и наименование практической работы;

- цель практической работы;

- ход выполнения работы;

- ответы на контрольные вопросы;

- вывод о выполненном задании.

Контрольные вопросы

1. Что называют корнем n-й степени из действительного числа?

2. Может ли корень четной степени из положительного числа быть отрицательным?

3. При каком условии можно извлечь корень n-й степени из отрицательного числа?

4. Как называется корень n-й степени, если n=2, n=3?

5. Свойства корня n-й степени.

Сделайте вывод о том, какие математические навыки вы приобрели на этом занятии.