- •6 Вспомогательные материалы для выполнения лабораторных работ 102
- •3Введение
- •4Рекомендации по выполнению практической части лабораторных работ
- •5Методы процедурного программирования
- •6Модульное проектирование
- •7Структурное программирование
- •7.1Проектирование сверху вниз
- •7.2Модульное программирование
- •7.3Структурное кодирование
- •9Цель работы
- •10Порядок выполнения работы
- •11.1Запуск ide. Типы приложений
- •11.2Создание нового проекта
- •11.3Добавление к проекту файлов с исходным кодом
- •3.3.1 Добавление нового файла
- •3.3.2 Добавление существующего файла
- •11.4Многофайловые проекты
- •11.5Компиляция, компоновка и выполнение проекта
- •3.5.1 Конфигурация проекта
- •3.5.2 Как открыть проект, над которым вы работали ранее
- •12Встроенная справочная система
- •13Проблемы с вводом-выводом кириллицы
- •5.1. Замечания по потоковому вводу-выводу
- •6. Работа с отладчиком
- •6.1. Установка точки прерывания
- •6.2. Выполнение программы до точки прерывания
- •6.3. Пошаговое выполнение программы
- •6.3.1 Проверка значений переменных во время выполнения программы
- •6.3.2 Окна Auto, Local и Watch
- •7 Содержание отчета по лабораторной работе
- •14Контрольные вопросы
- •Как открыть проект, над которым вы работали ранее?
- •14.1Рекомендуемые источники информации
- •15Лабораторная работа 2. Программирование разветвляющихся алгоритмов
- •16Цель работы
- •17Задание
- •18Рекомендации по разработке программы
- •19Требования к отчету
- •20Контрольные вопросы
- •21Рекомендуемые источники информации
- •Московский государственный технический университет им. Н.Э. Баумана.
- •22Лабораторная работа 3. Табулирование функций с использованием рядов Тейлора
- •23Цель работы
- •24Задание
- •25Рекомендации по выполнению работы
- •25.1Указание к задаче 1 задания
- •25.2Указание к задаче 2 задания
- •25.3Указание к задаче 3 задания
- •25.4Указание к задаче 4 задания
- •26Содержание отчета.
- •27Контрольные вопросы
- •28Рекомендуемые источники информации
- •29 Варианты задания
- •29.1.1.1Вариант 1
- •29.1.1.2Вариант 2
- •29.1.1.3Вариант 3
- •29.1.1.4Вариант 4
- •29.1.1.5Вариант 5
- •29.1.1.6Вариант 6
- •29.1.1.7Вариант 7
- •29.1.1.8Вариант 8
- •29.1.1.9Вариант 9
- •29.1.1.10Вариант 10
- •29.1.1.11Вариант 11
- •29.1.1.12Вариант 12
- •29.1.1.13Вариант 13
- •30Лабораторная работа 4 Численные методы решения нелинейных уравнений
- •31Цель работы.
- •32Задание.
- •33Рекомендации по выполнению работы
- •34Содержание отчета
- •40Примеры работы с массивами
- •40.1Количество элементов между минимальным и максимальным
- •40.2Динамические массивы
- •40.3Использование датчика случайных чисел.
- •41Содержание отчета
- •42Контрольные вопросы
- •43Рекомендуемые источники информации
- •44Лабораторная работа 6. Численное интегрирование функций
- •45Цель работы.
- •46Задание.
- •47Рекомендации по выполнению работы.
- •47.1Метод прямоугольников.
- •47.2Метод трапеций.
- •47.3Формулы для вычисления точных значений интеграла:
- •47.4Примеры передачи в функцию в качестве параметров одномерных массивов и имен функций.
- •3.5. Пример вывода таблицы результатов
- •47.5Функция для печати таблицы результатов
- •48Содержание отчета
- •49Контрольные вопросы
- •50Рекомендуемые источники информации
- •51Лабораторная работа 7 Обработка и печать числовой матрицы
- •52Цель работы
- •53Задание
- •Рекомендации по выполнению работы
- •53.1Создание двухмерных динамических массивов
- •53.2Передача многомерного массива в функцию с помощью параметров.
- •53.3Пример разработки программы сортировки строк матрицы
- •53.4Основные правила работы с двухмерными массивами
- •53.5Рекомендации по созданию программы
- •54Содержание отчета
- •55Контрольные вопросы
- •57.3Рекомендации по выполнению работы
- •57.4Ввод-вывод строк
- •57.5Пример программы работы с символьными строками.
- •I. Исходные данные и результаты
- •II. Алгоритм решения задачи
- •57.6Работа с файлами
- •Void open (char*FileName, int режим, int защита);
- •57.7Потоки ввода-вывода.
- •57.7.1.1Функции для обмена с потоками
- •57.7.1.2Функции чтения
- •57.8Использование аргументов командной строки
- •Часть 1.
- •Часть 2.
- •63.33. Рекомендации по выполнению работы
- •63.4Алгоритм вычисления обратной матрицы
- •63.4.1.1Шаг 1. Прямой ход
- •63.4.1.2Шаг 2. Обратный ход
- •63.4.23.2. Точность вычисления обратной матрицы.
- •69Задание и требования к результатам работы
- •70Рекомендации по выполнению работы
- •70.1Шаги разработки программы
- •70.2Работа со структурами
- •70.3Дополнительные требования для «сильных» студентов:
- •71Содержание отчета
- •72Контрольные вопросы
- •73Рекомендуемые источники информации
- •74Домашнее задание. Методические указания к домашнему заданию по курсу «Основы программирования»
- •76Цели домашнего задания
- •2. Требования к выполнению задания
- •76.1Групповая разработка проектов
- •76.2Шаги выполнения задания
- •77Требования к отчету
- •78Оценка выполнения задания
40.2Динамические массивы
Если до начала работы программы неизвестно, сколько в массиве элементов, в программе следует использовать динамические массивы. Память под них выделяется с помощью операции new в динамической области памяти во время выполнения программы. Адрес начала массива хранится в переменной, называемой указателем. Например:
int n = 10;
int *a = new int[n];
Во второй строке описан указатель на целую величину, которому присваивается адрес начала непрерывной области динамической памяти, выделенной с помощью операции new. Выделяется столько памяти, сколько необходимо для хранения n величин типа int. Величина n может быть переменной.
ВНИМАНИЕ!!! Обнуления памяти при ее выделении не происходит. Инициализировать динамический массив нельзя.
Обращение к элементу динамического массива осуществляется так же, как и к элементу обычного — например а[3]. Можно обратиться к элементу массива и другим способом— *(а + 3). В этом случае мы явно задаем те же действия, что выполняются при обращении к элементу массива обычным образом. Рассмотрим их подробнее. В переменной-указателе а хранится адрес начала массива. ( Имя статического массива также является указателем на его первый элемент, только константным, то есть ему нельзя присвоить новое значение).
Для получения адреса третьего элемента к этому адресу прибавляется смещение 3. Операция сложения с константой для указателей учитывает размер адресуемых элементов, то есть на самом деле индекс умножается на длину элемента массива:
а + 3 * sizeof(int). Затем с помощью операции * (разадресация) выполняется выборка значения из указанной области памяти.
Если динамический массив в какой-то момент работы программы перестает быть нужным и мы собираемся впоследствии использовать эту память повторно, необходимо освободить ее с помощью операции delete[ ], например:
delete [] a;
Размерность массива при этом не указывается.
ВНИМАНИЕ!!! Квадратные скобки в операции delete [] при освобождении памяти из-под массива обязательны. Их отсутствие может привести к неопределенному поведению программы.
Таким образом, время жизни динамического массива, как и любой динамической переменной, — с момента выделения памяти до момента ее освобождения. Область действия зависит от места описания указателя, через который производится работа с массивом. Область действия и время жизни указателей подчиняются общим правилам. Как вы помните, локальная переменная при выходе из блока, в котором она описана, «теряется». Если эта переменная является указателем и в ней хранится адрес выделенной динамической памяти, при выходе из блока эта память перестает быть доступной, однако не помечается как свободная, поэтому не может быть использована в дальнейшем. Это называется утечкой памяти и является распространенной ошибкой:
{ // пример утечки памяти
int n; cin >> n;
int *pmas = new int[n];
} // после выхода из блока указатель pmas недоступен
40.3Использование датчика случайных чисел.
#include <iostream>
using namespace std;
int iRandom( int a, int b ) // Генерирует случайные целые числа, распределенные в //интервале [a,b] по равномерному закону.
// rand() – программный датчик случайных целых чисел, равномерно распределенных в //интервале [0, RAND_MAX].
{
return a + ( b - a +1) * rand()/RAND_MAX ; //RAND_MAX = 215-1=32767
}
double dRandom( int a, int b ) // Генерирует случайные вещественные числа, //распределенные в интервале [a,b] по равномерному закону.
{
return a + ( b - a ) * rand() / (double)RAND_MAX;
}
void main()
{//При повторном запуске программы будет выдаваться одна и та же последовательность //чисел.
/*Чтобы последовательность не повторялась, при запуске программы перед вызовом функции iRandom( a,b ) один раз нужно выполнить операторы:
srand( (unsigned int) time( NULL ) );// установить начальное значение – текущее время
rand( ); //сброс первого числа, чтобы не повторялось, пока srand не изменется
*/
const int n = 13; // количество элементов в массиве
int a[n], i; // массив целых чисел
for( i = 0; i < n; i++ ) // цикл инициализации массива
{ a[i] = iRandom( 1, 9 ); // целая случайная величина
cout<<”a[“<<i<<”]=”<<a[i]<<endl; // монитор
}
}
