Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Raspechatka_glav_4.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
527.87 Кб
Скачать

7. Неустановившаяся фильтрация упругой жидкости в упругой пористой среде

Неустановившиеся процессы возникают при пуске и остановке скважин, либо при изменении темпов отбора флюидов. Такие процессы характеризуются перераспределением давления, а также изменением скоростей фильтрационных потоков и дебитов во времени и зависят от упругих свойств пластов и насыщающих их жидкостей. Т.е. основной формой пластовой энергии, обеспечивающей приток жидкости к скважине, – энергия упругой деформации жидкости и материала пласта. При снижении пластового давления объём сжатой жидкости увеличивается, а объём порового пространства сокращается за счет расширения материала пласта, что определяет вытеснение жидкости из пласта в скважину. Хотя коэффициенты сжимаемости жидкости и пласта малы ( , ,

), но зато велики объемы пластов и за счет этого при упругом режиме, могут быть значительные притоки жидкости.

Характерной особенностью упругого режима является то, что процесс перераспределения пластового давления очень медленный. Это связано с тем, что при фильтрации вязкой жидкости в пласте возникают большие силы сопротивления.

Подсчет упругого запаса жидкости в пласте.

Выделим V0 – элемент объема пласта. Тогда, V – объем жидкости насыщающей этот элемент пласта при начальном давлении р0 равен:

V= m V0 (7.1)

В соответствии с законами Гука, изменение упругого запаса жидкости Vз в объеме V0 при изменении давления на р определяется как:

(7.2)

где - коэффициент упругоемкости пласта, численно равный изменению упругого запаса жидкости в единице объема при изменении пластового давления на единицу.

Продифференцировав (7.2) по времени и учитывая, что , получим:

(7.3)

Если формулы (7.1) - (7.3) относить к разрабатываемому в условиях замкнуто-упругого режима нефтяному месторождению, то под V0 следует понимать объем пласта, в котором к данному моменту времени произошло изменение давления на величину р, при этом, , где - начальное пластовое давление; - средневзвешенное по объему возмущенной части пласта V0 давление. Вычислить средневзвешенное пластовое давление можно, если известна геометрия возмущенной части пласта и конкретное распределение давления в ней, по формуле:

. (7.4)

Уравнение пьезопроводности получено при совместном решении системы уравнений теории изотермической фильтрации и законов сжимаемости жидкости и пористой среды:

1) уравнение неразрывности,

(7.5)

2) закон Дарси,

; (7.6)

3) уравнение состояния сжимаемой жидкости:

; (7.7)

4) зависимость пористости от давления:

. (7.8)

Подставив (7.6 – 7.8) в (7.5) и пренебрегая членами второго порядка малости, получим уравнение пьезопроводности:

- в дек. системе координат (7.9)

или

- в случае осевой симметрии (7.10)

где: - коэффициент пьезопроводности пласта, характеризующий темп перераспределения пластового давления в условиях упругого режима.

Некоторые точные решения уравнения пьезопроводности.

1. Плоско-параллельный случай, приток упругой жидкости в полубесконечном пласте к прямолинейной галерее скважин.

Для рассматриваемого одномерного движения жидкости уравнение пьезопроводности запишется в виде:

(7.11)

Уравнение (7.11) решается при следующих начальных и граничных условиях:

(7.12)

Условия (7.12) можно интерпретировать таким образом: в начальный момент времени t = 0 пластовое давление было всюду в пласте одинаковым и равным рк. При пуске скважины в момент времени t > 0 на галерее при х = 0 давление мгновенно упало до величины рг, при этом на бесконечности x = давление остается постоянным и равным начальному пластовому рк.

Решение задачи (7.11) - (7.12) получено методом автомодельной переменной и имеет следующий вид, рис.24:

(7.13)

г де: - автомодельная переменная, а

- интеграл вероятности или интеграл Гаусса, который табулирован и имеется в математических справочниках.

Дебит галереи Q при x = 0 выражается в виде:

, (7.14)

т.е. с течением времени Q убывает 

2. Плоско-радиальный случай реализуется в задаче о притоке упругой жидкости к скважине (точечному стоку или источнику) на плоскости в неограниченном пласте с постоянной мощностью и абсолютной проницаемостью.

В этом случае уравнение пьезопроводности имеет вид:

, (7.15)

и решается при следующих граничных и начальных условиях:

(7.16)

У словия (7.16) интерпретируются иначе чем (7.12): в начальный момент времени t = 0 пластовое давление было всюду в пласте одинаковым и равным рк. В момент времени t > 0 в точке r = 0 начинает работать добывающая скважина с постоянным объемным дебитом Q0, на бесконечности r = давление остается неизменным и равным рк.

Уравнение (7.15) при граничных условиях (7.16) также решается методом автомодельной переменной:

. (7.17)

Перераспределение давления в пласте выражается, рис.25:

, (7.18)

где: - интегрально показательная функция, которая табулирована и имеется в математических справочниках.

(7.19)