Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Raspechatka_glav_2.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
12.77 Mб
Скачать

Задача 3.13

Определить относительное понижение пьезометрического уровня :

в реагирующих скважинах, расположенных от возмущающей скважины на расстояниях 1 м, 100 м, 1 км, 10 км. Движение жидкости установившееся плоскорадиальное по закону Дарси. Радиус скважины rc= 10 см, расстояние до контура питания Rк=100 км.

Задача 3.14

Сколько жидкости следует закачивать в пласт в единицу времени через нагнетательную скважину, если необходимо, чтобы давление на стенке скважины поддерживалось в процессе закачки на р = 1,47МПа выше давления, установившегося в пласте на расстоянии r = 2 км от скважины? Имеет место закон Дарси. мощность пласта h = 10м, коэффициент проницаемости k = 150 мД, коэффициент динамической вязкости нефти = 1сПз, радиус скважины rс = 10 см.

4. Установившаяся фильтрация сжимаемой жидкости и газа. Функция Лейбензона.

При установившейся изотермической фильтрации сжимаемой жидкости и газа закон Дарси и вытекающие из него формулы, выведенные в предыдущем параграфе, не выполняются, так как объемный расход Q в этих законах в условиях сжимаемости возрастает по мере падения давления за счет расширения жидкости или газа. Одинаковым остается массовый расход Qm,, что вытекает из условия сплошности и неразрывности потока:

(4.1)

Л.С. Лейбензон впервые ввел потенциальную функцию:

(4.2)

Тогда закон Дарси можно переписать, введя понятие массовой скорости фильтрации :

или , (4.3)

где .

Проведя такую аналогию можно сделать вывод, что все формулы полученные для установившейся фильтрации несжимаемой жидкости по закону Дарси можно использовать и для установившейся фильтрации сжимаемой жидкости и газа при тех же граничных условиях со следующей заменой переменных:

Объемный расход Q

массовый расход Qm

Скорость фильтрации

массовая скорость фильтрации

Давление р

функция Лейбензона

Например, формула Дюпюи в условиях сжимаемости будет иметь вид:

(4.4)

Остается определить вид функции Лейбензона для различных сжимаемых флюидов.

1. Для сжимаемой жидкости выполняется следующее уравнение состояния, полученное из закона Гука:

(4.5)

где ж – коэффициент сжимаемости жидкости.

При (например, для воды ж  4,510-101/Па) экспоненту можно разложить в ряд и ограничиться первыми двумя членами разложения можно приближенно записать:

(4.6)

Тогда точное значение функции Лейбензона для сжимаемой жидкости равно:

, (4.7)

а приближенное:

(4.8)

т.е. можно считать жидкость несжимаемой.

2. Для идеального газа уравнение состояния Менделеева - Клайперона при изотермическом течении можно записать так:

(4.9)

где ат- плотность газа при атмосферном давлении и пластовой температуре.

Функция Лейбензона для идеального газа имеет вид:

(4.10)

А) Для плоско-параллельной фильтрации идеального газа массовый дебит на галерее скважин:

(4.11)

Приведенным расходом Qат назовем объемный расход, приведенный к атмосферному давлению и пластовой температуре:

(4.12)

Тогда из 4.11 получим:

(4.13)

Используя (3.3) получим распределение давления при фильтрации идеального газа, рис.5:

(4.14)

В) При плоскорадиальной фильтрации формула для приведенного дебита газовой скважины (аналог формулы Дюпюи (3.5)) будет иметь вид:

(4.15)

Индикаторную линию для газов строят в координатах и .

Используя (3.7) получим распределение давления в круговом пласте для идеального газа:

(4.16)

В случае плоскорадиальной фильтрации идеального газа по двучленному закону фильтрации приведенный дебит скважины можно определить из формулы:

(4.17)

При этом индикаторные линии газовых скважин, в призабойной зоне которых заведомо нарушается закон Дарси, строят в координатах , и тогда формула для обработки таких линий принимает следующий вид:

(4.18)

где: , .