- •Котов владислав викторович доцент, профессор кафедры робототехники и автоматизации производства, доктор технических наук
- •1.Введение в информатику
- •1.1.История развития информатики
- •1.2. Структура курса. Рекомендуемая литература
- •1.3.История развития вычислительной техники
- •2.Понятие информации
- •2.1.Информация и её свойства
- •2.2.Дискретный источник информации
- •2.3.Мера информации по Хартли
- •2.4.Мера информации по Шеннону
- •3. Общая характеристика процессов сбора, передачи, обработки и накопления информации
- •3.1.Процессы сбора, передачи, обработки и накопления информации
- •3.2.Этапы обращения информации в информационно-измерительных и управляющих системах
- •4.Технические средства реализации информационных процессов
- •4.1.Структура персонального компьютера
- •4.2.Периферийное оборудование персонального компьютера
- •5.Программные средства реализации информационных процессов
- •5.1.Виды программного обеспечения
- •5.2.Операционные системы. Организация и средства человеко-машинного интерфейса в ос Windows
- •5.3.Прикладное программное обеспечение
- •6.Способы представления и хранения текстовой и числовой информации
- •6.1.Хранение информации в компьютере. Кодирование символьных данных. Кодовые таблицы ascii, ansi, koi-8
- •6.2.Знаковые и позиционные системы счисления. Правила перевода чисел из одной системы счисления в другую
- •6.3.Основные арифметические операции в двоичной системе
- •6.4.Булева алгебра. Основные операции и правила булевой алгебры
- •7.Алгоритмизация и программирование
- •7.1.Понятие алгоритма
- •7.2.Основные условные элементы для создания схем алгоритмов
- •7.3.Примеры простейших алгоритмов
- •8.Языки программирования высокого уровня. Основы языка Паскаль
- •8.1.Языки программирования высокого уровня
- •8.2.Запись программы на Паскале
- •8.3.Основные типы данных в Паскале
- •8.4.Структура Паскаль-программы
- •9.Оператор присваивания. Ввод-вывод в программах на Паскале
- •9.1.Оператор присваивания. Запись арифметических выражений
- •9.2.Процедуры ввода данных с клавиатуры
- •9.3.Процедуры вывода данных на экран
- •Условный оператор
- •9.4.Алгоритмы с ветвлением
- •9.5.Структура и синтаксис условного оператора
- •9.6.Задание логических выражений для передачи управления
- •9.7.Составные условия с использованием логических операторов
- •Операторы циклов с неопределённым числом повторений
- •9.8.Назначение операторов циклов. Циклы с пред- и постусловием
- •9.9.Структура и синтаксис оператора while
- •9.10.Структура и синтаксис оператора repeat … until
- •Оператор цикла с параметром
- •9.11.Цикл с параметром. Структура и синтаксис оператора for
- •9.12.Примеры программирования итерационных алгоритмов
- •Диапазонный тип данных. Массивы
- •9.13.Диапазонные типы данных
- •9.14.Массивы. Описание и использование массивов
- •Процедуры и функции
- •9.15.Структурный подход к разработке программы. Подпрограммы
- •9.16.Понятие подпрограммы, виды подпрограмм в Паскале.
- •9.17.Синтаксис объявления и использования процедур
- •9.18.Синтаксис объявления и использования функций
- •9.19.Примеры использования подпрограмм на Паскале
- •9.20.Параметры-значения и параметры-переменные
- •Строковый тип данных
- •9.21.Общие сведения о работе со строками символов
- •9.22.Процедуры и функции обработки строк
- •Работа с файлами
- •9.23.Понятие файла. Типы файлов в Паскале
- •9.24.Инициализация файловых переменных
- •9.25.Процедуры открытия файлов
- •9.26.Ввод-вывод данных в файл и общие подпрограммы для работы
- •Работа с графикой
- •9.27.Графический и текстовый режимы работы видеоадаптера
- •9.28.Инициализация графического режима
- •9.29.Основные средства библиотеки Graph для работы с графикой
- •Программное обеспечение и технологии программирования
- •9.30.Технология структурного программирования
- •9.31.Принципы проектирования программ «сверху-вниз» и «снизу-вверх»
- •9.32.Модульный принцип программирования
- •9.33.Технология объектно-ориентированного программирования
- •9.34.Основные критерии оценки качества программ
- •Базы данных
- •9.35.Общее представление о базах данных
- •9.36.Основные понятия систем управления базами данных
- •9.36.1.Классификация субд
- •9.36.2.Основные функции субд
- •9.37.Уровни представления данных
- •9.38.Основные модели данных
- •9.38.1.Понятие модели данных
- •9.38.2.Типы структур данных
- •9.38.3.Сетевая модель данных (смд)
- •9.38.4.Иерархическая модель данных (имд)
- •9.39.Реляционные базы данных
- •Домен 1 . . .. . Домен 2 . . . . . . . . .Домен 3 (ключ) . . . .Домен 4 . . . ..Домен 5
- •9.39.1.Достоинства и недостатки рмд
- •9.39.2.Операции реляционной алгебры
- •Локальные и глобальные сети эвм
- •9.40.Понятие о сетях эвм
- •9.41.Классификация сетей: локальные и глобальные сети эвм
- •9.42.Понятие топологии. Виды сетевых топологий
- •9.43.Информационные технологии, основанные на сетях
- •Методы защиты информации
- •9.44.Основы защиты информации и сведений, составляющих государственную тайну
- •9.45.Организационные методы защиты информации
- •9.46.Криптографическая защита информации
- •Экономические и правовые аспекты информационных технологий
- •9.47.Система стандартов на программную документацию
- •9.48.Виды программ и программных документов
- •9.49.Основные стадии и этапы разработки программ и программной документации
9.38.4.Иерархическая модель данных (имд)
Иерархическая модель позволяет строить БД с иерархической древовидной структурой. Структура ИМД описывается в терминах, аналогичных терминам сетевой модели данных.
Дерево – это связный неориентированный граф, который не содержит циклов. Обычно при работе с деревом выделяют какую-то конкретную вершину, определяют её как корень дерева и рассматривают особо – в эту вершину не заходит ни одно ребро. В этом случае дерево становится ориентированным. Ориентация определяется от корня. Дерево как ориентированный граф можно определить следующим образом:
имеется единственная особая вершина, называемая корнем, в которую не заходит ни одно ребро;
во все остальные вершины заходит только одно ребро, а исходит произвольное количество ребер;
граф не содержит циклов.
Конечные вершины, то есть вершины, из которых не выходит ни одной дуги, называются листьями дерева.
В иерархических моделях данных используется ориентация древовидной структуры от корня к листьям. Графическая диаграмма схемы базы данных называется деревом определения. Пример иерархической базы данных приведён на рис.6.
Рис. 6. Пример иерархической базы данных
Каждая некорневая вершина связана с родительской записью иерархическим групповым отношением. Каждая вершина дерева соответствует сущности ПО, которая характеризуется произвольным количеством атрибутов, связанных с ней отношением 1:1. Атрибуты, связанные с сущностью отношением 1:n, образуют отдельную сущность и переносятся на следующий уровень иерархии. Тип вершины определяется типом сущности и набором её атрибутов. Каждая вершина дерева хранит экземпляры сущностей – записи. Следствием внутренних ограничений иерархической модели является то, что каждому экземпляру зависимой группы в БД соответствует уникальное множество экземпляров родительских групп – по одному экземпляру каждого типа вершин вышестоящих уровней.
В ИМД также предусмотрены специальные способы навигации. Передвижение по дереву всегда начинается с корневой вершины, от которой можно прейти на конкретный экземпляр записи любой вершины следующего уровня. Эта вершина становится текущей вершиной, а экземпляр – текущим экземпляром (записью). От этой записи можно перейти к другой записи данной вершины, к экземпляру записи родительской вершины или к экземпляру записи подчиненной вершины.
Корневая запись дерева должна содержать ключ с уникальным значением. Ключи некорневых записей должны иметь уникальные значения только в экземплярах групповых отношений, т.е. на одном и том же уровне иерархии в разных ветвях дерева могут быть экземпляры записей с одинаковыми ключами. Это объясняется тем, что каждая запись идентифицируется полным сцепленным ключом, который образуется путём конкатенации всех ключей экземпляров родительских записей (групп). Таким образом, попасть в любую вершину можно, только проделав полный путь по дереву от корня.
Связи между записями в ИМД обычно выполнены в виде ссылок (т.е. хранятся адреса связанных записей).
Основным недостатком ИМД является дублирование данных. Оно вызвано тем, что каждая сущность (атрибут) может подчиняться (принадлежать) только одной родительской сущности. Таким образом, если надо сохранить, например, данные о детях сотрудника, а на предприятии трудится и отец, и мать ребенка, то информацию о детях придётся хранить дважды. Это может вызвать нарушение логической целостности БД при внесении изменений в данные о детях.
Если данные имеют естественную древовидную структуризацию, то использование иерархической модели данных не вызывает проблем. Но на практике часто требуется реализовать структуры данных, отличные от иерархической. Для решения этих задач конкретные СУБД, основанные на ИМД, включают дополнительные средства, облегчающие представление произвольно организованных данных.
