Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лабы метода физика.rtf
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
12.74 Mб
Скачать

Рекомендуемая литература Теория

  1. Александров Н.В., Яшкин Л.Я. Курс общей физики. Механика. - М.: Просвещение, 1978.

  2. Архангельский М.М. Курс физики. Механика. - М.: Просвещение, 1975.

  3. Детлаф А.А., Яворский Б.М. Курс физики, т. I. - М.: Высшая школа, 1973.

  4. Савельев И.В. Курс общей физики. Механика и молекулярная физика. - М.: Наука, 1986.

  5. Савельев И.В. Курс физики, т. I. - М.: Наука, 1973.

  6. Сивухин Д.В. Общий курс физики, т. I. - М.: Наука, 1975.

  7. Стрелков С.П. Механика. - М.: Наука, 1975.

  8. Хайкин С.Э. Физические основы механики. - М.: Наука, 1971.

  9. Фриш С.Э., Тиморева А.В. Курс общей физики, т. I. - М.: Физматгиз, 1961.

Физические лаборатории

  1. Александров Н.В. Практикум по общему курсу физики. Механика и акустика. М.: Просвещение, 1964.

  2. Каленков С.Г., Соломахо Г.И. Практикум по физике. Механика. – М: Высшая школа, 1990.

  3. Кортнев А.В., Рублев Ю.В., Куценко А.Н. Практикум по физике. – М.: Высшая школа, 1965.

  4. Лабораторный практику по общей физики. / Под. ред. Гершензона и Малова Е.М. - М.: Просвещение, 1985.

  5. Руководство к лабораторным занятиям по физики. / Под. ред. Гольдена Л.Л. - М.: Наука, 1964.

  6. Салецкий А.М., Слепков А.И. Динамика твердого тела. Лабораторный практикум. – М.: издательство физического факультета МГУ им. М. В. Ломоносова, 1997.

  7. Физический практикум, ч. I / Под. ред. Ромченко И.С. – М.: издательство Московского инженерно-физического института, 1970.

  8. Физический практикум./ Под. ред. Ивероновой В.И. - М.: Наука, 1967.

Математическая обработка результатов измерений

Под измерением понимают сравнение измеряемой величины с другой величиной, принятой за единицу измерения.

Измерения подразделяются на прямые и косвенные.

При прямых измерениях определяемую величину сравнивают с единицей измерения непосредственно или при помощи измерительного прибора, проградуированного в соответствующих единицах.

При косвенных измерениях искомая величина определяется (вычисляется) по результатам прямых измерений других величин, которые связаны с измеряемой величиной определенной функциональной зависимостью.

1. Погрешности результатов измерений

Истинное значение физической величины обычно точно определить нельзя. Корректный способ представления результатов любого измерения состоит в том, что экспериментатор указывает свою наилучшую оценку измеряемой величины xнаил и интервал, в котором, как он уверен, она лежит:

(измеренная величина) (1)

Например: g=9,82±0,02м/с2.

Величину Dх называют абсолютной погрешностью или доверительным интервалом определения х.

В студенческой лаборатории полученные абсолютные погрешности обычно должны округляться до одной значащей цифры, например Dg=0,02385м/с2»0,02м/с2.. Но, пожалуй, не стоит делать округление типа 0,14»0,1, ведь это сразу на 40% уменьшает погрешность.

Запись результата измерения в виде (1) необходимо делать так, чтобы последняя значащая цифра должна быть того же порядка (находиться в той же десятичной позиции), что и погрешность. Например: 92,8±0,3; 93±3; 90±30.

Очевидно, что качество измерения характеризуется не только самой абсолютной погрешностью, но также и отношением Dx к xнаил, т.е. относительной погрешностью измерения

. (2)

По-видимому, простейший тип учебного эксперимента - измерение величины, принятое значение которой известно. Например, эксперимент по определению скорости звука в воздухе обычно завершается сравнением измеренного значения скорости (допустим, 329±5м/с) с принятым (табличным) значением 331м/с. Очевидно, что вывод в данном случае может быть таким: «Измеренное значение скорости звука совпадает с табличным значением с точностью до погрешности измерения». Измерение может рассматриваться как удовлетворительное, даже если принятое значение слегка выходит за рамки измеренного интервала (допустим, 325±5м/с).

Во многих экспериментах измеряют два значения, которые, согласно теории должны быть равны. Две величины считаются равными, если их измеренные интервалы перекрываются. Например, импульсы р1 = 1,51±0,04 кг×м/с и р2= 1,56±0,06 кг×м/с можно

считать «равными с точностью до погрешностей измерений».

Все погрешности подразделяют на систематические, случайные и промахи.

Систематической называют такую погрешность, которая остается постоянной или закономерно изменяется при повторных измерениях одной и той же величины. Такие погрешности возникают в результате конструктивных особенностей измерительных приборов, неточности метода исследования, каких-либо упрощений экспериментатора, применении для вычислений неточных формул, округления констант. Систематические погрешности либо увеличивают, либо уменьшают результаты измерений. В любом измерительном приборе заложена та или иная систематическая погрешность, которую невозможно устранить, но которую можно учесть.

Случайные погрешности – ошибки, появление которых не может быть предупреждено, а их величина непредсказуема. Поэтому случайные погрешности могут оказать определенное влияние на отдельное измерение, но при многократных измерениях они подчиняются статистическим законам и их влияние на результаты измерений можно учесть или значительно уменьшить.

Промахи и грубые погрешности, – чрезвычайно большие ошибки, явно искажающие результаты измерения. Этот класс погрешностей вызван чаще всего неправильными действиями наблюдателя. Измерения, содержащие промахи, следует отбросить.

Для оценки полной погрешности необходимо знать и случайную и систематическую погрешности.