
- •2. Три концепции информации, измерение информации, вероятностный и объемный подход. Показатели качества информации.
- •4. Системы счисления. Примеры задания чисел в различных системах счисления. Перевод целых и дробных чисел из десятеричной системы в 2-чную, 8-чную, 16-чную и обратно. Примеры.
- •6. Классификация эвм по принципу действия, по назначению, по этапам создания. Развитие элементарной базы и языков программирования.
- •7. Алгоритм, свойства алгоритмов и способы записи алгоритмов.
- •8. Технология разработки алгоритмов, метод пошаговой детализации, структурный подход. Базисные управляющие структуры. Примеры алгоритмов линейной, разветвляющейся и циклической структуры.
- •11. Ошибки. Классификация и виды ошибок, где появляются, где выявляются. Последовательность обнаружения ошибок. Методы устранения. Примеры.
- •12.Алгоритмы обработки данных. Итерационные алгоритмы вычисления суммы ряда, интегралов, нахождение корней уравнения.
- •14. Метод пошаговой детализации алгоритмов, разбиение алгоритмов на предопределенные процессы.
- •15. Архитектура эвм Джона Фон Неймана. Структурная схема эвм. Взаимодействие и назначение устройств. Принципы, определяющие современную архитектуру эвм.
- •16. Микропроцессор. Его характеристики, состав и основные функции, принцип работы. Понятие прерывания, типы прерываний.
- •17. Системная шина, назначение, состав, характеристики.
- •18. Память эвм и ее характеристики и назначение. Пзу, озу, взу. Организация и физическое представление данных в эвм.
- •19. Типы взу. Магнитные, оптические носители, флэш-память, принципы записи.
- •20. Видеоподсистема, видеокарта, монитор. Типы мониторов, основные характеристики.
- •21. Периферийные устройства эвм. Принтеры, сканеры, модемы, сетевые адаптеры. Принципы их работы, характеристики.
- •22. Взаимодействие центральных и периферийных устройств пэвм.
- •23. Жизненный цикл программного продукта, стадии жизненного цикла.
- •24. Классификация по эвм по уровневому принципу.
- •25. Системные программы виды и назначение. Драйверы и утилиты.
- •26. Операционные системы. Подразделения ос по типу аппаратного обеспечения. Основные функции ос. Распределение ресурсов эвм между процессами.
- •27. Файловая система, физическое и логическое представление данных на диске.
- •28. Драйверы устройств. Архиваторы. Вирусы, виды вирусов, антивирусные программы.
- •29. Прикладные программы, виды и назначение.
- •30. Системы программирования, их назначение и состав.
- •31. Базы данных, основные понятия.
- •32. Субд основные понятия, основные функции, основные компоненты.
- •33. Классификация субд по типу модели данных
- •34. Основы проектирования реляционной модели данных. Понятия отношений, атрибутов, кортежей. Свойства таблиц. Примеры. (Илья, перечитай это завтра.)
- •35. Нормализация отношений, типы связей. Примеры.
- •36. Вычислительные сети.
- •37. Канал связи, узел, адресация узлов. Цели использования сетей. Подразделение сетей по технологии передачи, по размеру, по принципу построения.
- •38. Основные характеристики сетей.
- •39. Уровни модели взаимодействия открытых сетей. Задачи каждого уровня.
- •40. Сетевые протоколы, свойства протоколов.
- •41.Топология вс. Кольцо, шина, звезда. Преимущества и недостатки каждой из них.
- •42. Виды коммутации. Коммутация каналов, сообщений, пакетов. Преимущества и недостатки каждой из них.
19. Типы взу. Магнитные, оптические носители, флэш-память, принципы записи.
ТИПЫ ВЗУ, (по критерию физической основы или технологии производства носителя)
-магнитные носители, -оптические, -флеш-память
Магнитные носители
Магнитные носители основаны на свойстве материалов находиться в двух состояниях: «не намагничено»-«намагничено», кодирующие 0 и 1. По поверхности носителя перемещается головка, которая может считывать состояние или изменять его. Запись данных на магнитный носитель осуществляется следующим образом. При изменении силы тока, проходящего через головку, происходит изменение напряженности динамического магнитного поля на поверхности магнитного носителя, и состояние ячейки меняется с «не намагничено» на «намагничено» или наоборот. Операция считывания происходит в обратном порядке. Намагниченные частички ферро магнитного покрытия являются причиной появления электрического тока. Электромагнитные сигналы, которые возникают при этом, усиливаются и анализируются, и делается вывод о значении 0 или 1.
Из-за контакта головки с поверхностью носителя через некоторое время носитель приходит в негодность.
Рассмотрим три типа магнитных носителей.
1. Накопители на жестких магнитных дисках (НЖМД; harddisk – жесткий диск) представляют собой несколько дисков с магнитным покрытием, нанизанные на шпиндель, в герметичном металлическом корпусе. При вращении диска происходит быстрый доступ головки к любой части диска.
2. Накопители на гибких магнитных дисках (НГМД; FDD – Floppy Disk Drive) предназначены для записи информации на переносные носители – дискеты.
3. Дисковые массивы RAID (Redundant Array of Inexpensive Disks – массив недорогих дисков с избыточностью) используются для хранения данных в суперкомпьютерах (мощных ЭВМ предназначенных для решения крупных вычислительных задач) и серверах (подключенных к сети ЭВМ, предоставляющих доступ к хранящимся в них данным). Массивы RAID – это несколько запоминающих устройств на жестких дисках, объединенные в один большой накопитель, обслуживаемый специальным RAID-контроллером.
Оптические носители
Оптические носители представляют собой компакт-диски диаметром. Оптические носители состоят из трех слоев:
1) поликарбонатная основа (внешняя сторона диска);
2) активный (регистрирующий) слой пластика с изменяемой фазой состояния;
3) тончайший отражающий слой (внутренняя сторона диска).
В центре компакт-диска находится круглое отверстие, надеваемое на шпиндель привода компакт-дисков.
Запись и считывание информации на компакт-диск осуществляется головкой, которая может испускать лазерный луч. Физический контакт между головкой и поверхностью диска отсутствует, что увеличивает срок службы компакт-диска. Фаза второго пластикового слоя, кристаллическая или аморфная, изменяется в зависимости от скорости остывания после разогрева поверхности лазерным лучом в процессе записи, выполняемой в приводе. При медленном остывании пластик переходит в кристаллическое состояние и информация стирается (записывается «0»); при быстром остывании элемент пластика переходит в аморфное состояние (записывается «1»).
1) ROM (Read Only Memory) – только для чтения; запись невозможна;
2) R (Recordable) – для однократной записи и многократного чтения; диск может быть однажды записан; записанную информацию изменить нельзя и она доступна только для чтения;
3) RW (ReWritable) – для многократной записи и чтения; информация на диске может быть многократно перезаписана. Эти типы дисков отличаются материалом, из которого изготовлен второй пластиковый слой.
Флэш-память
Флэш-память представляет собой микросхемы памяти, заключенные в пластиковый корпус, и предназначена для долговременного хранения информации с возможностью многократной перезаписи. Микросхемы флэш-памяти не имеют движущихся частей. При работе указатели в микросхеме перемещаются на начальный адрес блока, и затем байты данных передаются в последовательном порядке. При производстве микросхем флэш-памяти используются логические элементы NAND (И-НЕ). Количество циклов перезаписи флэш-памяти превышает 1 млн. В настоящее время размер флэш-памяти превышает 64 Гбайт (2011 г.), что позволило флэш-памяти вытеснить дискеты. Флэш-память подключается к порту USB.