
- •2. Три концепции информации, измерение информации, вероятностный и объемный подход. Показатели качества информации.
- •4. Системы счисления. Примеры задания чисел в различных системах счисления. Перевод целых и дробных чисел из десятеричной системы в 2-чную, 8-чную, 16-чную и обратно. Примеры.
- •6. Классификация эвм по принципу действия, по назначению, по этапам создания. Развитие элементарной базы и языков программирования.
- •7. Алгоритм, свойства алгоритмов и способы записи алгоритмов.
- •8. Технология разработки алгоритмов, метод пошаговой детализации, структурный подход. Базисные управляющие структуры. Примеры алгоритмов линейной, разветвляющейся и циклической структуры.
- •11. Ошибки. Классификация и виды ошибок, где появляются, где выявляются. Последовательность обнаружения ошибок. Методы устранения. Примеры.
- •12.Алгоритмы обработки данных. Итерационные алгоритмы вычисления суммы ряда, интегралов, нахождение корней уравнения.
- •14. Метод пошаговой детализации алгоритмов, разбиение алгоритмов на предопределенные процессы.
- •15. Архитектура эвм Джона Фон Неймана. Структурная схема эвм. Взаимодействие и назначение устройств. Принципы, определяющие современную архитектуру эвм.
- •16. Микропроцессор. Его характеристики, состав и основные функции, принцип работы. Понятие прерывания, типы прерываний.
- •17. Системная шина, назначение, состав, характеристики.
- •18. Память эвм и ее характеристики и назначение. Пзу, озу, взу. Организация и физическое представление данных в эвм.
- •19. Типы взу. Магнитные, оптические носители, флэш-память, принципы записи.
- •20. Видеоподсистема, видеокарта, монитор. Типы мониторов, основные характеристики.
- •21. Периферийные устройства эвм. Принтеры, сканеры, модемы, сетевые адаптеры. Принципы их работы, характеристики.
- •22. Взаимодействие центральных и периферийных устройств пэвм.
- •23. Жизненный цикл программного продукта, стадии жизненного цикла.
- •24. Классификация по эвм по уровневому принципу.
- •25. Системные программы виды и назначение. Драйверы и утилиты.
- •26. Операционные системы. Подразделения ос по типу аппаратного обеспечения. Основные функции ос. Распределение ресурсов эвм между процессами.
- •27. Файловая система, физическое и логическое представление данных на диске.
- •28. Драйверы устройств. Архиваторы. Вирусы, виды вирусов, антивирусные программы.
- •29. Прикладные программы, виды и назначение.
- •30. Системы программирования, их назначение и состав.
- •31. Базы данных, основные понятия.
- •32. Субд основные понятия, основные функции, основные компоненты.
- •33. Классификация субд по типу модели данных
- •34. Основы проектирования реляционной модели данных. Понятия отношений, атрибутов, кортежей. Свойства таблиц. Примеры. (Илья, перечитай это завтра.)
- •35. Нормализация отношений, типы связей. Примеры.
- •36. Вычислительные сети.
- •37. Канал связи, узел, адресация узлов. Цели использования сетей. Подразделение сетей по технологии передачи, по размеру, по принципу построения.
- •38. Основные характеристики сетей.
- •39. Уровни модели взаимодействия открытых сетей. Задачи каждого уровня.
- •40. Сетевые протоколы, свойства протоколов.
- •41.Топология вс. Кольцо, шина, звезда. Преимущества и недостатки каждой из них.
- •42. Виды коммутации. Коммутация каналов, сообщений, пакетов. Преимущества и недостатки каждой из них.
40. Сетевые протоколы, свойства протоколов.
Протоколы – это соглашение о формате и правилах передачи данных по сети. Протоколы обладают следующими свойствами:
- протоколы работают на разных уровнях модели OSI, поэтому функции протокола определяются уровнем, на котором он работает;
- несколько протоколов могут работать совместно, в этом случае они образуют стек или набор протоколов разных уровней модель OSI.
Передача данных по сети разбита на несколько шагов, каждому из которых соответствует протокол. Узел-отправитель выполняет следующие шаги:
- разбивает данные на пакеты;
- добавляет к пакетам служебную информацию: адрес получателя и информацию для проверки правильности и восстановления в случае возникновения ошибок при передачи;
- передает пакеты в сеть через сетевой адаптер.
Узел-получатель выполняет шаги в обратной последовательности:
- принимает пакеты из сети через сетевой адаптер;
- проверяет правильность передачи данных и удаляет служебную информацию из пакетов;
- объединяет пакеты в исходный блок данных.
41.Топология вс. Кольцо, шина, звезда. Преимущества и недостатки каждой из них.
Топологии вычислительных сетей
Вычислительные машины, объединенные в локальную сеть, физически могут располагаться различным образом. Однако порядок их подсоединения к сети определяется топологией – усредненной геометрической схемой соединений узлов сети.
Наиболее распространенными топологиями локальных сетей, в которых передающей средой является кабель, являются кольцо, шина, звезда.
Топология кольцо предусматривает соединение узлов сети замкнутым контуром и используется для построения сетей, занимающих сравнительно небольшое пространство. Выход одного узла сети соединяется с входом другого. Информация по кольцу передаются от узла к узлу в одном направлении. Каждый промежуточный узел ретранслирует посланное сообщение. Принимающий узел распознает и получает только адресованное ему послание.
Топология кольцо
Последовательная организация обслуживания узлов сети снижает ее быстродействие, а выход из строя одного из узлов приводит к нарушению функционирования кольца.
Топология шина представляет собой последовательное соединение узлов между собой. Данные распространяются по шине в обе стороны. В каждый момент времени передачу может вести только один узел, поэтому производительность сети зависит только от количества узлов в сети. Сообщение поступает на все узлы, но принимает его только тот узел, которому оно адресовано. Узлы не перемещают сообщение, поэтому выход из строя одного узла не приводит к нарушению функционирования сети.
Топология шина
Топология звезда базируется на концепции центрального узла, через который вся информация ретранслирует, переключает, маршрутизирует (находит путь от источника к приемнику) информационные потоки в сети.
В качестве центрального узла выступает концентратор (хаб, hub). Концентраторы выполняются в виде отдельных устройств с 8, 16, 24 или 48 портами, к которым подключаются ЭВМ. При получении пакета в одном из портов концентратор широковещательно передает его на все остальные порты. Узлы анализируют адрес получателя пакета и, если он предназначен им, то получают его, иначе игнорируют его.
Концентраторы могут быть трех типов:
1) пассивные: только соединяющие сегменты сети;
2) активные: это пассивные концентраторы, усиливающие сигналы, увеличивая расстояние между узлами;
3) интеллектуальные: это активные концентраторы, выполняющие маршрутизацию.
Также центральным узлом сети может быть коммутатор (switch). В отличие от концентратора, это телекоммуникационное устройство пересылает принятый пакет не широковещательно на все порты, а адресату. Адресат определяется по адресу, содержащемуся в пакете. В результате такой передачи повышается общая пропускная способность сети.
Данная топология значительно упрощает взаимодействие узлов сети друг с другом. В то же время работоспособность локальной вычислительной сети зависит от центрального узла.
Топология звезда
При построении локальных сетей используются данные топологии или их сочетания.
ТО ЖЕ САМОЕ, НО КРАТКО:
Топология – логическая схема соединения компьютеров в сети.
1)Топология кольцо.
Соединение узлов сети замкнутым контуром. Информация по кольцу передается от узла к узлу в одном направлении. Каждый промежуточный узел ретранслирует посланное сообщение. Принимающий узел распознает и получает только адресованное ему послание.
2)Топология звезда.
Базируется на концепции центрального узла, через который вся информация ретранслирует, переключает, маршрутизирует потоки в сети.
В качестве центрального узла выступает концентратор. Концентраторы выполняются в виде отдельных устройств, к которым подключаются ЭВМ.
Данная топология упрощает взаимодействие узлов в сети друг с другом. Работоспособность локальной вычислительной сети зависит от центрального узла.
3)Топология шина.
Данные по шине распространяются по обе стороны. В каждый момент времени, передачу может вести только один узел, поэтому производительность сети зависит только от кол-ва узлов в сети. Выход из строя одного узла не приводит к нарушению функционирования сети.