- •1. Припекание тел, контактирующих «в точке»
- •1.1 Возможные механизмы припекания твердых тел, контактирующих в «точке»
- •1.2. Геометрия контактной области. Движущая сила припекания
- •Геометрические характеристики контактного перешейка
- •1.3. Механизм вязкого течения
- •1.4. Механизм объемной самодиффузии
- •1.5. Взаимное припекание при наличии прижимающего усилия
- •1.6. Механизм поверхностной диффузии
- •1.7. Механизм переноса вещества через газовую фазу
- •1.8. Закон «размеров»
- •Параметр в законе «размеров»
- •1.9. Взаимное припекание частиц произвольной формы
- •Закономерности, описывающие кинетику припекания сферических частиц
- •Закономерности, описывающие кинетику припекания частиц неправильной формы
- •2. Припекание разнородных тел
- •2.1. Взаимно – нерастворимые тела
- •2.2. Эффекты Кикрендалла и Френкеля
- •2.3. Припекание взаимно-растворимых твердых тел
- •3. Залечивание (спекание) изолированных пор
- •3.1. Залечивание изолированной поры в однородной изотропной среде
- •3.2. Роль границ зерен и дислокаций в залечивании изолированной поры
- •3.3. Залечивание изолированной поры в изотропной среде под влиянием значительных внешних давлений
- •3.4. Перемещение поры как единого целого
- •4. Ансамбль пор в реальном твердом теле
- •4.1. Ансамбль пор в квазивязкой сплошной среде
- •4.2. Коалесценция пор в ансамбле
- •4.3. Коалесценция пор при наличии стоков вакансий. Расширение локализованной пористой области
- •Спекающие добавки, вводимые в керамику на основе y2o3
- •5. Спекание однокомпонентных порошковых прессовок
- •5.1. Стадии процесса усадки
- •5.2. Активность дисперсных порошков
- •5.3. Влияние «гравитационных» и остаточных напряжений на спекание
- •Изменение размеров порошковых заготовок
- •Изменение размеров свободно насыпанного порошка
- •5.4. Феноменологическое описание процесса спекания
- •5.5. Поздняя стадия спекания порошковых прессовок
- •6. Влияние давления на уплотнение пористого тела при высоких температурах
- •7. Спекание двухкомпонентных порошковых прессовок
- •7.1. Концентрационная зависимость линейной усадки двухкомпонентных смесей в твердой фазе
- •7.2. Модифицирование порошков в процессе спекания. Активированное спекание
- •8. Спекание с участием жидкой фазы
- •Рассчитанные значения потенциалов некоторых ионов
- •Рассчитанные значения температур (оС) появления жидкой фазы в системах по а. С. Бережному
- •Составы эвтектических добавок (мас. %)
- •9. Методы исследования кинетики спекания
- •9.1. Сущность энергии активации
- •9.2. Модели физико-химических процессов в технологии тугоплавких неметаллических материалов
- •9.3. Изотермический метод исследования кинетики спекания
- •9.4. Определение кажущейся энергии начальной стадии спекания методом ступенчатой изотермической дилатометрии
- •9.5. Дифференциальный метод неизотермической кинетики
- •Оценка адекватности используемых моделей по Пирсону
- •9.6. Интегральный метод неизотермической кинетики
- •Библиографический список: Основной
- •Дополнительный
- •Оглавление
- •Макаров Николай Александрович лемешев Дмитрий Олегович физическая химия спекания
1.3. Механизм вязкого течения
Конкретный механизм переноса массы вследствие течения существенно зависит от структуры вещества частиц. В случае аморфного вещества вязкое течение осуществляется путем кооперативного перемещения атомов или ионов, и коэффициент вязкости η является константой вещества, определяющей скорость течения. Для кристаллических тел вязкое течение вещества может осуществляться вследствие диффузионно-вязкого преобразования формы или вследствие диффузионного восхождения дислокаций. Как и в случае аморфных тел, этот процесс непороговый (предел текучести равен нулю), однако перемещение атомов (ионов) не является процессом кооперативным, а есть следствие независимых элементарных актов диффузионного перемещения под влиянием давления, приложенного извне, которое при «свободном» спекании обусловлено кривизной поверхности приконтактного перешейка.
Вне зависимости от конкретного механизма, вязкое течение вещества в область приконтактного перешейка сопровождается и увеличением площади контакта, и сближением центров контактирующих сфер (см. соотношение 1.4).
Задачу о кинетике припекания сферических крупинок вследствие вязкого течения вещества изложим, следуя следующей логике. Будем предполагать, что на протяжении всего процесса течения вещества в область приконтактного перешейка частицы сохраняют форму сферы R(t). При углах φ ≤ 1 (рис. 1.3) можно считать, что
R(t) ≈ R0, x(t) ≈ R0φ (1.6)
Свободная поверхность спекающихся сфер с изменением угла φ изменяется по закону
(1.7)
С точностью до величин порядка φ2 можно записать:
, (1.8)
и соответственно работа сил поверхностного натяжения
. (1.9)
Для нахождения закона изменения угла φ со временем (или, что то же, х = х(t)) работу сил поверхностного натяжения следует приравнять работе сил внутреннего трения, связанной с рассматриваемой деформацией:
, (1.10)
где
– общий объем деформирующегося тела,
ε – относительная деформация тела (совокупности двух шаров).
Задача о течении вещества в область приконтактного перешейка между двумя сферическими крупинками деформация может быть охарактеризована уменьшением расстояния между центром одной из крупинок и поверхностью ее контакта с другой, так что
(1.11)
Путем математических преобразований установлено, что:
(1.12)
Приравнивая (1.9) и (1.12), получим:
(1.13)
Согласно (1.6) φ ≈ x(t)/R0, поэтому
(1.14)
С ростом площади контакта происходит сближение центров контактирующих сфер, расстояние между которыми l = 2(R0 – h) определяется соотношением
(1.15)
и соответственно скорость сближения центров
. (1.16)
Характерное время t полного слияния частиц, исходный радиус которых R0, определится соотношением *)
, (1.17)
следующим из (1.14) в предположении x ≈ R0.
Соотношение (1.14) экспериментально подтверждено припеканием сферических частиц стекла как к плоской стеклянной пластинке, так и между собой. Исследовано взаимное припекание сфер стекла, имевших исходный радиус 4,9∙10-4 см. Результаты, полученные в опытах при T = 750 °С и 725 °С, в координатах ln (x/R0), ln t описываются прямыми, тангенс угла наклона которых в соответствии с соотношением (1.14) равен 2.
Припекание стеклянных сфер проводили в широком интервале температур. По данным о температурной зависимости вязкости найдена энергия активации вязкого течения изучаемого сорта стекла, которая практически совпала со значением, найденным в прямых опытах.
