- •Курс физики и биофизики
- •Введение
- •I.Поступательное движение
- •1. Кинематика поступательного движения.
- •2.Скорость поступательного движения
- •Динамика поступательного движения
- •1.Основные законы динамики
- •Закон изменения импульса
- •Закон сохранения импульса
- •Вес тела и невесомость
- •Работа и мощность
- •6. Энергия системы
- •7. Особенности движения тела в условиях невесомости.
- •II. Вращательное движение
- •Кинематика вращательного движения
- •1. Угловая скорость
- •2. Линейная скорость
- •3. Угловое ускорение
- •2. Момент инерции
- •3 Кинетическая энергия вращательного движения
- •4. Основной закон динамики вращательного движения
- •5. Закон изменения момента импульса
- •6. Закон сохранения момента импульса
- •III. Колебательное движение
- •Гармонические колебания
- •2. Основные характеристики гармонического колебания
- •7. Математический маятник
- •Сложение гармонических колебаний, происходящих по однойпрямой с одинаковой частотой
- •Сложение гармонических колебаний с кратными частотами
- •10. Затухающие колебания
- •11. Вынужденные колебания
- •12. Механический резонанс
- •Колебательные процессы в природе
- •IV. Волны
- •Поперечные и продольные волны
- •Уравнение плоской гармонической волны
- •3. Интенсивность плоской волны или плотность потока энергии
- •V. Акустика
- •1. Природа звука
- •2. Интенсивность звуковой волны
- •Звуковой резонанс
- •Характеристики слухового ощущения
- •Закон Вебера-Фехнера
- •6. Шкала единиц для интенсивности звука
- •Кривые равные громкости
- •Ультразвук и инфразвук
- •9. Физические основы измерения звуковых колебаний вклинике (звуковые методы исследований)
- •VI. Молекулярно – кинетическая теория (мкт)
- •1. Основные положения мкт:
- •Газовые законы для идеального газа
- •2. Основные уравнения мкт
- •3. Понятие о степенях свободы
- •Внутренняя энергия идеального газа
- •Работа газа в изопроцессах
- •5. Реальные газы
- •VII. Гидродинамика. Гемодинамика
- •Идеальная жидкость
- •Уравнение Бернулли
- •3. Течение реальной жидкости. Формула Ньютона
- •4. Физические свойства крови
- •5. Виды течения жидкости
- •Закон Гагена-Пуазейля
- •Модели сердечно-сосудистой системы
- •8. Пульсовые волны
- •9. Работа сердца
- •VIII. Реальные среды (жидкости и твердые тела)
- •1. Основные свойства жидкостей
- •2. Поверхностное натяжение жидкости
- •3. Дополнительное (Лапласовское) давление жидкости
- •4. Капиллярные явления
- •5. Газовая эмболия
- •6. Виды твердых тел
- •7. Закон Гука
- •8. Механические свойства биологических тканей
- •Моделью вязко-упругих свойств является параллельно соединенные этиэлементы, а для упруго-вязких – последовательное соединение:
- •IX. Термодинамика
- •1. Основные определения
- •2. Термодинамические системы
- •3. Первое начало термодинамики
- •4. Применение первого начала термодинамики к биологическим системам
- •Приведенная теплота и энергия
- •6. Второе начало термодинамики
- •7. Живой организм как открытая термодинамическая система
- •X.Электростатика
- •1. Электрическое поле
- •3. Потенциальная энергия электрического поля
- •4. Электроемкость
- •5. Проводники и диэлектрики в электрическом поле
- •Проводники:
- •Диэлектрики:
- •6.Поляризация диэлектриков
- •XI. Электрический ток
- •2. Правила Кирхгофа
- •3. Работа и мощность тока
- •4. Переменный электрический ток
- •Общее сопротивление переменному току
- •XII. Элементы электроники
- •Полупроводниковые электронные устройства
- •1. Полупроводниковый диод
- •Полупроводниковый триод
- •XIII. Постоянное магнитное поле
- •1. Магнитное поле
- •2. Взаимодействие магнитных полей двух токов в параллельных проводниках
- •3. Вещества парамагнитные, ферромагнитные и диамагнитные
- •XIV. Электромагнетизм
- •Опыты Фарадея
- •Направление тока эми
- •Основное уравнение эми
- •Самоиндукция
- •Токи замыкания и размыкания
- •Энергия магнитного поля
- •Вихревые токи
- •Электронно-лучевая трубка
- •XV.Действие электромагнитных полей, электрических токов на биообъекты
- •1.Действие на биоткани переменных высокочастотных токов. Диатермия.
- •2.Действие на биоткани переменного электрического поля ультравысокой частоты. Увч-терапия
- •Действие переменного высокочастотного магнитного поля. Индуктотермия
- •Воздействие на биологическиеткани электромагнитными волнами
- •5. Чувствительность живых существ к электромагнитным полям
- •Действие электрических токов на биологические структуры
- •1. Действие постоянного тока
- •2. Действие импульсных токов
- •3.Действие переменного тока на живые ткани
- •4. Эквивалентные электрические схемы моделирования биологических структур
- •5. Реография
- •XVI. Физические процессы в биологическихмембранах
- •1. Структура и свойства биологических мембран
- •Транспорт веществ через клеточные мембраны
- •2. Общее уравнение переноса
- •3. Электродиффузионное уравнение переноса
- •4. Пассивный и активный транспорт
- •Натрий-калиевый насос
- •5. Мембранный потенциал – φм
- •1)Потенциал покоя
- •2) Потенциал действия
- •6. Осмос
- •XVII. Волновые свойства света
- •1. Интерференция волн
- •2 . Интерференция света
- •3. Интерференция в природе
- •4. Интерференция на тонкой пленке
- •Интерферометр
- •5. Дифракция волн и света
- •Дифракционная решетка
- •Поляризация волн
- •Поляризация света
- •7. Интенсивность волны
- •8. Двойное лучепреломление
- •9. Оптически активные вещества
- •10. Дисперсия света
- •XVIII. Квантовые свойства света
- •1. Двойственность (дуализм) природы света
- •2. Постулаты Бора
- •3.Энергетические уровни атома
- •4. Виды излучения
- •Правило Стокса по фотолюминесценции
- •Применение люминесцентного анализа
- •XIX.Лазеры
- •Свойства лазерного излучения
- •XX. Тепловое излучение
- •Основные характеристики теплового излучения.
- •Абсолютно черное тело
- •Закон Кирхгофа
- •Закон Стефана-Больцмана
- •Закон Вина
- •Формула Планка
- •Инфракрасное излучение (ик)
- •Ультрафиолетовое излучение (уф)
- •XXI. Рентгеновское излучение
- •Биологическое действие рентгеновского излучения.
- •XXII. Ядро атома. Радиоактивность Состав ядра
- •Ядерные силы
- •Модели атомных ядер
- •Энергия связи
- •Радиоактивность
- •Основной закон радиоактивности распада.
- •Виды распадов
- •XXIII. Дозы излучения
- •XXIV. Элементы квантовой механики
- •XXV. Бионика
- •Введение в лабораторный практикум
- •1. Подготовка к выполнению лабораторной работы
- •2. Понятия об измерении и погрешностях измерения
- •3. Погрешности прямых измерений
- •4. Элементы теории погрешностей
- •5. Порядок вычисления погрешностей прямого измерения
- •6. Точность вычисления
- •7.Правила построения графиков
- •8. Контрольные задания для построения графиков
- •9. Основные правила техники безопасности при работе в лабораториях физики
- •Заключение
- •Рекомендуемая литература
- •Краткий справочник по физике Фундаментальные константы
- •Система единиц Приставки Си
- •Механика Кинематика:
- •Уравнение состояния:
- •Броуновское движение:
- •Распределение в потенциальном поле:
- •Термодинамика:
- •Тепловой баланс:
- •Тепловое расширение:
- •Тепловые машины:
- •Электрические и электромагнитные явления Электростатика:
- •Электродинамика. Постоянный ток:
- •Законы электролиза:
- •Электромагнетизм
- •Пространственно-энергетический параметр
9. Оптически активные вещества
Это такие вещества, которые имеют свойство вращать плоскость колебаний поляризованного света. Это, к примеру, некоторые кристаллы и чистые жидкости, а так же растворы многих органических веществ.
При прохождении света через оптически активное вещество, плоскость его колебаний поворачивается вокруг оси светового луча на угол, пропорциональный толщине слоя вещества в соответствии с формулой:
где:
– угол вращения;
- постоянная вращения (зависит от природы
вещества);
- длина пути луча (длина кюветы);
- концентрация вещества.
Поляриметрия – метод определения концентрации вещества в растворе, использующий вращения плоскости поляризации света. Применительно к определению концентрации сахара – этот метод называется сахариметрия.
Явление оптической активности веществ связано с анизотропией молекул. Лучи, поляризованные по кругу вправо и влево, распространяются с неодинаковой скоростью ввиду асимметрии пространственного расположения атомов и молекул.
Поэтому оптически активные вещества бывают левовращающие и правовращающие.
Явление поляризации лучей нашло практическое применение в конструкции безынерционных затворов для световых лучей, попадающих в фотоаппарат при сверхскоростных фотосъемках. Кроме того возможно применение этого явления для борьбы со слепящим действием автофар встречных машин. Если смотровые стекла и стекла в фарах заклеить поляроидами, ориентированными перпендикулярно друг относительно друга, то свет от встречной машины будет гаситься.
10. Дисперсия света
Это зависимость показателя преломления среды от длины волны света:
Дисперсия проявляется в том, что происходит разложение света в спектр при его преломлении, интерференции или дифракции. Луч белого света раскладывается на монохроматические лучи.
Дисперсия
называется нормальной, если
возрастает с уменьшением
световой
волны.
В противном случае дисперсия называется аномальной.
Различают три вида спектров излучения: линейчатые, полосатые и сплошные.
Для каждого химического элемента характерен свой спектр излучения (по числу линий и их расположению). На этом основан спектральный анализ веществ.
Если свет от его источника проходит через разряженный газ (или пар), то на спектре появляются черные линии (или полосы).
Это спектры поглощения, они соответствуют тем линиям спектра испускания, которые данный элемент дает.
XVIII. Квантовые свойства света
1. Двойственность (дуализм) природы света
С точки зрения корпускулярной теории свет представляет собой поток элементарных частиц света – фотонов. И этим объясняются все явления, связанные со взаимодействием света с веществом, в том числе фотоэффект и тепловое излучение. По волновой теории свет представляет собой электромагнитную волну (Гюйгенс, Максвелл и др.) и этим объясняются все явления, связанные с распространением света, в том числе интерференция, дифракция и поляризация. Еще не совсем ясно, как в одном и том же физическом явлении проявляются совершенно противоположные физические свойства, более того дуализм характерен и для всех микрочастиц. Современная теория квантовой механики исходит из концепции единого поля взаимодействия частиц.
