- •Лекция №1 Тема: Трубопроводы, им устройство, соединение труб, арматура
- •Вентили
- •Лекция №2 Тема: Машины для перемещения жидкостей (насосы)
- •Поршневые насосы
- •Ротационные насосы
- •Струйные насосы
- •Монтежю
- •Воздушные подъемники
- •Лекция №3 Тема: Машины для сжатия и перемещения газов
- •Многоступенчатые компрессоры
- •Лекция №4 Тема: Компрессоры
- •Центробежные компрессоры (вентиляторы)
- •Турбогазодувка
- •Турбокомпрессоры
- •Вакуум-насосы
- •Сравнение и области применения компрессорных машин различных типов
- •Лекция №5 Тема: Разделение жидких и газовых неоднородных систем
- •Тема: Отстаивание
- •Отстойник полунепрерывного действия с наклонными перегородками
- •Отстойник непрерывного действия с коническими полками
- •Непрерывно действующий отстойник для эмульсий
- •Лекция №6 Тема: Фильтрация
- •Газовый батарейный фильтр (с тканевыми фильтрующими элементами)
- •Мокрая очистка газов
- •Циклоны
- •Лекция №7 Тема: Центрифугирование
- •Непрерывно действующая центрифуга с механизированной выгрузкой осадка
- •Саморазгружающаяся фильтрующая центрифуга
- •Автоматическая фильтрующая центрифуга
- •Лекция№8 Тема: Теплопередача
- •Направление движения теплоносителей
- •Лекция №9 Тема: Нагревание
- •Нагревание "острым"паром
- •Трубчатая печь
- •Органические теплоносители
- •Лекция № 10 Тема: Охлаждение
- •Кожухотрубные теплообменники
- •Теплообменники типа "труба в трубе"
- •Погружные змеевиковые теплообменники
- •Спиральные теплообменники
- •Лекция №11 Тема: Массообменные процессы
- •Лекция №12 Тема: Понятие о равновесии фаз
- •Лекция №13 Тема: Абсорбация
- •Лекция № 14 Тема: Типы конструкции абсорберов
- •Трубчатый абсорбер
- •Абсорбер с листовой насадкой
- •Лекция №15 Тема: Тарельчатые абсорберы
- •Колонны с колпачкоеыми тарелками
- •Лекция №16
- •Лекция №17 Тема: Перегонка и ректификация
- •Лекция №18 Тема: Способы перегонки
- •Лекция№19 Тема: Ректификация
- •Лекция №20 Тема: Экстрактивная и азеотропная ректификация
- •Лекция №21 Тема: Адсорбция
- •Двухадсорберная установка непрерывного действия
- •Адсорберы с кипящим слоем мелкозернистого адсорбента
- •Лекция №22 Тема: Сушка
- •Камерная сушилка
- •Ленточные многоярусные сушилки
- •Барабанная сушилка
- •Лекция №23 Тема: Холод
- •Газокомпрессионные холодильные машины
- •Абсорбционные холодильные машины
- •Пароводяные эжекториые холодильные машины
- •Лекция №24 Тема: Химические реакторы
- •Реактор гидрирования ацетиленистых (Производство эбс)
- •Принципиальная схема узла дегидрирования алканов в алкены в частности бутана в н-бутилены, в кипящем слое пылевидного катализатора
- •Шаровой реактор для дегидрирования бутиленов
- •Градирни.
- •Конденсаторы-холодильники воздушного охлаждения.
Принципиальная схема узла дегидрирования алканов в алкены в частности бутана в н-бутилены, в кипящем слое пылевидного катализатора
Реактор для дегидрирования углеводородов в кипящем слое пылевидного катализатора, регенератор для восстановления активности катализатора
Исходный углеводород - бутановая фракция - проходит через змеевик, находящийся над кипящим слоем катализатора в реакторе-2, частично подогревается контактными газами, затем нагревается в печи-1, обогреваемой топливным газом, и поступает в нижнюю часть реактора-2. Реактор представляет собой вертикальный полый цилиндрический аппарат диаметром 5 м и высотой 29 м. Корпус его выполнен из углеродистой стали, внутри он футерован жароупорным кирпичом, покрытым жаростойкой сталью. В нижней части реактора имеется газораспределительная решетка-10, над которой помещены 8-12 секционных горизонтальных решеток провального или колосникового типа-9. В средней части реактора установлен змеевик-12 для быстрого охлаждения ("закалки") контактных газов. В верхней части реактора установлены циклоны-2 для освобождения контактного газа от основной массы уносимой им катализаторной пыли.
Перегретые пары бутаковой фракции из перегрева! ельной печи поступают под газораспределительную решетку-10 и затем через секционные решетки-9 в нижнюю зону реактора. В нижней зоне в кипящем слое пылевидного катализатора при 570-600° С происходит дегидрирование бутана в бутилен. После закалки в змеевике-12 и обеспыливания в циклонах-2 контактный газ с температурой около 580° С из верхней части реактора направляется в котел-утилизатор, а затем на установку разделения бутан-бутиленовой фракции.
Давление в верхней
части реактора около 0,15 МПа. Закоксованный
катализатор с температурой около 500° С
из нижней части кипящего слоя катализатора
поступает в отпарную часть реактора,
куда подается азот для удаления из
катализатора продуктов реакции. Из
нижней части реактора закоксованный
катализатор по трубопроводу подается
сжатым воздухом в регенератор. Скорость
движения пылевидного катализатора в
реакторе около 0,3-0,5 м/с. От температуры
и объема циркулирующего катализатора
зависит температурный режим реакции.
В нижнюю часть реактора под решетку с катализатором подается паровой конденсат для "закалки" контактного газа. Давление в реакторе 0,2 МПа, линейная скорость газа 0,3 м/с.
Шаровой реактор для дегидрирования бутиленов
Шаровой реактор
выполнен в форме шара диаметром около
6 м с решеткой для катализатора, высота
слоя которого примерно 2,2 м. Корпус из
стали Ст20 ' внутри футерован слоем
торкрет-бетона толщиной 0,25 м. Условия
и цикл работы шаровых реакторов такие
же, как и у вертикальных.
Реактор для получения ДМД
Формалин из колонны-1 вместе с возвратным формалином и серной кислотой поступает в верхнюю секцию реактора-2. Реакция конденсации осуществляется в жидкой фазе по принципу противотока в трубках реактора при температуре 80-100° С и давлении
1,6-2,0 МПа.
В
нижнюю часть секции реактора-2 навстречу
потоку формалина подается жидкая
изобуган-изобутиленовая фракция, которая
предварительно в экстракционной
колоние-4 извлекает из водного слоя
растворенные в нем ДМД и триметилкарбииол.
Формальдегидная шихта из нижней секции
реактора-2 поступает в верхнюю секцию
реактора-3, где завершается реакция
конденсации формальдегида с изобугиленом:
Реакторы-2 и 3 охлаждаются водой,
подаваемой в межтрубное пространство
реактора. Выход ДМД составляет 80-83% на
превращенный формальдегид и 66-68% на
превращенный изобутилен. С учетом
образования побочных продуктов
использование формальдегида составляет
92-96%, а изобутилена 88-92%. Продукты реакции, растворимые в воде, переходят в водный слой, нерастворимые - в масляный слой.
Масляный слой, содержащий основную массу ДМД побочные продукты и непрореагировавшие углеводороды С4, из верхней секции реактора-3 поступает вместе с погоном из колонны отгонки легколетучих органических соединений-5 на отмывку от формальдегида и нейтрализацию серной кислоты в нижнюю часть колон-ны-7, орошаемой водным раствором щелочи под давлением до 1,2 МПа. Отмытый масляный слой поступает в колонну-8 для отгонки изобутановой фракции, возвращаемой на установку дегидрирования. Кубовая жидкость из колонны-8 поступает в колонну-9, где в качестве погона отбирается" ДМД-ректификат, содержащий не менее 98% ДМД.
Ректификат используется для получения изопрена, а кубовая жидкость - высококипящие углеводороды (побочные продукты) - направляются на склад. Водный слой из нижней секции реактора-3 вместе с промывной водой, полученной после отмывки масляного слоя в колонне-7, нейтрализуются щелочью и поступают в экстракционную колонну-4, где свежая изобутан-изобутиленовая фракция извлекает из водною слоя часть растворенных в нем органических соединений. К этому водному слою можно добавить и сточную воду из узла переработки водного слоя-6. Затем водный слой поступает в колонну-5, в которой производится отгонка растворенных в нем ДМД, триметилкарбинола, метанола и других соединений. Погон колонны-5 присоединяется к масляному слою из реактора-3. Из колонны-5 водный слой вместе с водным слоем из цеха разложения ДМД поступает на переработку в узел-б, где производится рекуперация формалина, возвращаемого на синтез, ДМД, в колонну-1, и выделение высококипящих продуктов. Сточная вода, направляется на химическую водоочистку.
Узел-б состоит из колонны упарки формалина, колонны концентрирования формальдегида и установки экстракции высококипящих побочных продуктов.
Основным аппаратом данного процесса является реактор для получения ДМД. Этот аппарат состоит из трех основных частей: нижней секции, трубчатого реактора и верхней секции. Реакция происходит в трубках реактора при температуре 80-100о С и давлении 1,6-2,0 МПа. Охлаждение производится водой, подаваемой в межтрубное пространство реактора. Ввиду агрессивности реакционной среды весь аппарат выполнен из кислотоупорной стали, только кожух трубчатки выполнен из углеродистой стали СтЗ.
