Добавил:
Upload
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз:
Предмет:
Файл:магистр _сгм - копия1111111.doc
X
- •О.В.Старожилова специальные главы математики
- •Оглавление
- •Тема 3 Нелинейная парная регрессия 152
- •Тема 4. Линейная множественная регрессия 160
- •Тема 5. Нелинейная множественная регрессия 175
- •Глава 1 Гармонический анализ
- •1.1 Задача о звучащей струне
- •1.2 Ортогональные системы функций
- •Доказательство
- •1.3 Ряд Фурье по тригонометрической системе функций
- •Доказательство
- •1.4 Достаточные условия разложения функции в ряд Фурье
- •1.5 Разложение в ряд Фурье непериодической функции
- •1.6 Ряд Фурье для четных и нечетных функций
- •Доказательство
- •1.7 Ряды Фурье для функций любого периода
- •1.8 Интеграл Фурье
- •1.9 Интеграл Фурье для четной и нечетной функции
- •1.10 Комплексная форма интеграла Фурье
- •1.11 Преобразование Фурье
- •Глава 2 Математическая логика и ив
- •2.1 Этапы развития логики
- •2.2 Логика высказываний
- •2.3Логические связки
- •2.4Логические операции
- •2.5 Алфавит исчисления высказываний
- •2.6 Формулы .Тавтология
- •2.7Законы логики высказываний
- •2.8 Формальные теории. Выводимость. Интерпретация
- •2.9 Аксиоматический метод
- •2.10 Система аксиом исчисления высказываний (ив)
- •2.11 Правила вывода
- •1 Правило подстановки(пп).
- •2 Правило заключения (пз).
- •2.12 Производные правила вывода
- •2.13 Построение вывода в логике высказываний
- •Закон перестановки посылок.
- •Закон соединения посылок
- •Закон разъединения посылок .
- •2.14 Связь между алгеброй и исчислением высказываний
- •Контрольные вопросы
- •Глава 3 Задачи регрессионного анализа
- •3.1 Метод наименьших квадратов
- •3.2 Линейный регрессионный анализ
- •3.3 Оценка модели регрессии
- •3.4 Проблемы применения метода линейной регрессии
- •3.5 Предпосылки статистической модели лр
- •3.6 Задачи регрессионного анализа
- •3.7 Многомерная нормальная регрессионная модель
- •3.8 Вариация зависимой переменной
- •Контрольные вопросы
- •Глава 4 Общая постановка и виды задач принятия решений
- •4.1 Математическая постановка задачи оптимизации
- •4.2Локальный и глобальный минимум цф
- •4.3 Методы безусловной оптимизации
- •4.4 Метод покоординатного спуска
- •4.5 Метод Розенброка
- •4.6 Метод конфигураций
- •4.7 Методы случайного поиска
- •4.8 Метод Ньютона
- •Глава 5 Преобразование Фурье
- •5.1 Аппрокисмация функции по Фурье
- •5.2 Преобразование Фурье
- •5.3 Быстрое преобразование Фурье
- •Лабораторный комплекс Гармонический и спектральный анализ
- •Вариант № 29
- •Вариант № 30
- •Тема 2. Линейная парная регрессия
- •Решение
- •Тема 3 Нелинейная парная регрессия
- •Тема 4. Линейная множественная регрессия
- •Тема 5. Нелинейная множественная регрессия
- •Численные методы поиска безусловного экстремума Графический анализ функции
- •Задача одномерного поиска
- •Алгоритм Свенна
- •Метод перебора
- •Метод поразрядного поиска
- •Метод дихотомии.
- •Метод Фибоначчи
- •Метод средней точки
- •Метод Ньютона
- •Литература
Алгоритм Свенна
Задать произвольно следующие параметры: некоторую точку
,
t>0–величину шага.
Положить k=0.Вычислить значение функции в трех точках
,
,
:Проверить условия окончания:
если
,
то начальный интервал неопределенности
найден:
[
] = [
];
если
,
то функция не является унимодальной,
а требуемый интервал неопределенности
не может быть найден. Вычисления при
этом прекращаются (рекомендуется
задать другую начальную точку
);
если условие окончания не выполняется, то перейти к шагу 4.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
