- •О.В.Старожилова специальные главы математики
- •Оглавление
- •Тема 3 Нелинейная парная регрессия 152
- •Тема 4. Линейная множественная регрессия 160
- •Тема 5. Нелинейная множественная регрессия 175
- •Глава 1 Гармонический анализ
- •1.1 Задача о звучащей струне
- •1.2 Ортогональные системы функций
- •Доказательство
- •1.3 Ряд Фурье по тригонометрической системе функций
- •Доказательство
- •1.4 Достаточные условия разложения функции в ряд Фурье
- •1.5 Разложение в ряд Фурье непериодической функции
- •1.6 Ряд Фурье для четных и нечетных функций
- •Доказательство
- •1.7 Ряды Фурье для функций любого периода
- •1.8 Интеграл Фурье
- •1.9 Интеграл Фурье для четной и нечетной функции
- •1.10 Комплексная форма интеграла Фурье
- •1.11 Преобразование Фурье
- •Глава 2 Математическая логика и ив
- •2.1 Этапы развития логики
- •2.2 Логика высказываний
- •2.3Логические связки
- •2.4Логические операции
- •2.5 Алфавит исчисления высказываний
- •2.6 Формулы .Тавтология
- •2.7Законы логики высказываний
- •2.8 Формальные теории. Выводимость. Интерпретация
- •2.9 Аксиоматический метод
- •2.10 Система аксиом исчисления высказываний (ив)
- •2.11 Правила вывода
- •1 Правило подстановки(пп).
- •2 Правило заключения (пз).
- •2.12 Производные правила вывода
- •2.13 Построение вывода в логике высказываний
- •Закон перестановки посылок.
- •Закон соединения посылок
- •Закон разъединения посылок .
- •2.14 Связь между алгеброй и исчислением высказываний
- •Контрольные вопросы
- •Глава 3 Задачи регрессионного анализа
- •3.1 Метод наименьших квадратов
- •3.2 Линейный регрессионный анализ
- •3.3 Оценка модели регрессии
- •3.4 Проблемы применения метода линейной регрессии
- •3.5 Предпосылки статистической модели лр
- •3.6 Задачи регрессионного анализа
- •3.7 Многомерная нормальная регрессионная модель
- •3.8 Вариация зависимой переменной
- •Контрольные вопросы
- •Глава 4 Общая постановка и виды задач принятия решений
- •4.1 Математическая постановка задачи оптимизации
- •4.2Локальный и глобальный минимум цф
- •4.3 Методы безусловной оптимизации
- •4.4 Метод покоординатного спуска
- •4.5 Метод Розенброка
- •4.6 Метод конфигураций
- •4.7 Методы случайного поиска
- •4.8 Метод Ньютона
- •Глава 5 Преобразование Фурье
- •5.1 Аппрокисмация функции по Фурье
- •5.2 Преобразование Фурье
- •5.3 Быстрое преобразование Фурье
- •Лабораторный комплекс Гармонический и спектральный анализ
- •Вариант № 29
- •Вариант № 30
- •Тема 2. Линейная парная регрессия
- •Решение
- •Тема 3 Нелинейная парная регрессия
- •Тема 4. Линейная множественная регрессия
- •Тема 5. Нелинейная множественная регрессия
- •Численные методы поиска безусловного экстремума Графический анализ функции
- •Задача одномерного поиска
- •Алгоритм Свенна
- •Метод перебора
- •Метод поразрядного поиска
- •Метод дихотомии.
- •Метод Фибоначчи
- •Метод средней точки
- •Метод Ньютона
- •Литература
2.14 Связь между алгеброй и исчислением высказываний
Формулы исчисления высказываний можно интерпретировать как формулы алгебры высказываний. Для этого будем трактовать переменные исчисления высказываний как переменные алгебры высказываний, т. е. переменные в содержательном смысле, принимающие два значения: истина и ложь (1 и 0).
Операции
определим так же, как в алгебре
высказываний.
При этом всякая формула исчисления высказываний при любых входящих в нее переменных будет принимать одно из значений 1 или 0, вычисляемое по правилам алгебры высказываний.
Введем понятие значения формулы исчисления высказываний. Пусть А- формула исчисления высказываний, х1,х2,…,хn- попарно различные переменные, среди которых находятся все переменные, входящие в формулу А. Обозначим через а1, а2,…,аn набор значений этих переменных, состоящих из 1 и 0, длины n. Очевидно, что вектор (а1, а2,…,аn) имеет 2n значений.
Имеют место три теоремы, которые устанавливают связь между основными фактами алгебры высказываний и исчисления высказываний.
Теорема 1. Каждая формула, доказуемая в исчислении высказываний, является тождественно истинной в алгебре высказываний.
Формулировка этой теоремы содержит в себе три положения:
1)Каждая аксиома исчисления высказываний – тождественно истинная формула в алгебре высказываний.
2)Правило подстановки, примененное к тождественно истинным формулам, приводит к тождественно истинным формулам.
3)Правило заключения, примененное к тождественно истинным формулам, приводит к тождественно истинным формулам.
Теорема 2.( о выводимости) Пусть А –некоторая формула исчисления высказываний; х1,х2,…,хn – набор переменных, содержащих все переменные, входящие в формулу А; а1, а2,…,аn – произвольный фиксированный набор значений этих переменных. Обозначим через Н конечную совокупность формул
,
где
Тогда:
Если Ra1,a2,..,an(A)=1, то H├A .
Если Ra1,a2,..,an(A)=0, то H├ , где Ra1,a2,..,an(A)–значение формулы А на наборе а1, а2,…,аn.
Теорема 3 Каждая тождественно истинная формула алгебры высказываний доказуема в исчислении высказываний.
Правила подстановки и замены
Логическая эквивалентность и логическое следствие
Определение. Формулы и называются логически эквивалентными тогда и только тогда, когда формула – тавтология.
Теорема. Отношение лог.эквивалентности- отношение эквивалентности (Рефлексивно,симметрично,транзитивно)
Справедливы правило подстановки и правило замены.
Пусть
и
– формулы, содержащие букву
,
и
– формулы, полученные из формул
и
соответственно подстановкой вместо
буквы
формулы
.
Правило подстановки. Если формула логически эквивалентна формуле , то формула логически эквивалентна формуле .
Пусть
– формула, в которой выделена некоторая
подформула
,
– формула, полученная из формулы
заменой
на некоторую формулу
.
Правило замены. Если формулы
и
логически эквивалентны, то логически
эквивалентны и формулы
и
.
Доказательства правил подстановки и замены основано на сравнении таблиц истинности соответствующих формул.
Пример.
Док-ем:По правилу подстановки,
эквивалентна формуле
.
По правилу замены,
эквивалентна формуле
.Следовательно,
по свойству транзитивности, формулы
и
логически эквивалентны.
Определение. Говорят, что формула логически влечет формулу , если формула является тавтологией.
Теорема. Отношение логического следствия - отношение предпорядка, то есть рефлексивно и транзитивно.
