- •Глава 1. Введение
- •1.1. Общие положения
- •1.2. История развития биотехнологии
- •1.3. Биосистемы, объекты и методы в биотехнологии
- •Продукты синтеза, используемые в биотехнологии
- •1.4. Основные направления развития методов биотехнологии в ветеринарии
- •На развитие биотехнологии
- •Не загрязняющее окружающую среду
1.3. Биосистемы, объекты и методы в биотехнологии
Одним из терминов в биотехнологии является понятие «биосистемы». Обобщенные характеристики биологической (живой) системы могут быть сведены к трём присущим им основным признаками:
1. Живые системы являются гетерогенными открытыми системами, которые обмениваются с окружающей средой веществами и энергией.
2. Эти системы являются самоуправляемыми, саморегулирующими, идактивными, т.е. способными к обмену информацией с окружающей средой для поддержания своей структуры и управления процессами метаболизма.
3. Живые системы являются самовоспроизводящимися (клетки, организмы).
По структуре биосистемы делятся на элементы (подсистемы), связанные между собой, и характеризуются сложной организацией (атомы, молекулы, органеллы, клетки, организмы, популяции, сообщества).
Управление в клетке представляет собой сочетание процессов синтеза молекул белков - ферментов, необходимых для осуществления той или иной функции, и непрерывных процессов изменения активности в ходе взаимодействия триплетных кодов ДНК в ядре и макромолекул в рибосомах. Усиление и торможение ферментативной активности происходит в зависимости от количества начальных и конечных продуктов соответствующих биохимических реакций. Благодаря этой сложной организации биосистемы отличаются от всех неживых объектов.
Поведение биосистемы является совокупностью ее реакций в ответ на внешние воздействия, т.е. наиболее общей задачей управляющих систем живых организмов является сохранение его энергетической основы при изменяющихся условиях внешней среды.
Амосов Н.М. делит все биосистемы на пять иерархических уровней сложности: одноклеточные организмы, многоклеточные организмы, популяции, биогеоценоз и биосферу.
Одноклеточные организмы - это вирусы, бактерии и простейшие. Функции одноклеточных - обмен веществом и энергией со средой, рост и деление, реакции на внешние раздражители в виде изменения обмена и формы движения. Все функции одноклеточных поддерживаются за счет биохимических процессов ферментативной природы и за счет энергетического обмена - начиная от способа получения энергии и до синтеза новых структур или расщепления существующих. Единственным механизмом одноклеточных, обеспечивающим их приспособление к окружающей среде, является механизм изменений в отдельных генах ДНК и, как следствие, изменение белков - ферментов и изменение биохимических реакций.
Основой системного подхода к анализу структур биосистем является ее представление в виде двух компонентов - энергетической и управляющей.
На рис. 1.1 показана обобщенная принципиальная схема потоков энергии и информации в любой биосистеме. Основным, элементом является энергетическая составляющая, обозначенная через МС (метаболическая система), и управляющая, обозначенная через Р (генетическое и физиологическое управление) и передающая сигналы управления на эффекторы (Э). Одной из главных функций метаболической системы является снабжение биосистем энергией.
Рис. 1.1. Потоки энергии и информации в биосистеме
Структура биосистем поддерживается механизмами генетического управления. Получая от остальных систем энергию и информацию в виде продуктов обмена веществ (матаболитов), а в период формирования - в виде гормонов, генетическая система управляет процессом синтеза необходимых веществ и поддерживает жизнедеятельность остальных систем организма, причем процессы в этой системе протекают достаточно медленно.
Несмотря на многообразие биосистем, отношения между их биологическими свойствами остаются инвариантными для всех организмов. В сложной системе возможности к адаптации значительно больше, чем в простой. В простой системе эти функции обеспечиваются малым количеством механизмов, при этом они более чувствительны к изменениям во внешней среде.
Для биосистем характерна качественная неоднородность, проявляющаяся в том, что в рамках одной и той же функциональной биосистемы совместно и слаженно работают подсистемы с качественно различными адекватными управляющими сигналами (химическими, физическими, информационными).
Иерархичность биосистем проявляется в постепенном усложнении функции на одном уровне иерархии и скачкообразном переходе к качественно другой функции на следующем уровне иерархии, а также в специфическом построении различных биосистем, их анализа и управления в такой последовательности, что итоговая выходная функция нижележащего уровня иерархии входит в качестве элемента в вышележащий уровень.
Постоянное приспособление к среде и эволюция невозможны без единства двух противоположных свойств: структурно-функциональной организованности и структурно-функциональной вероятности, стохастичности и изменчивости.
Структурно-функциональная организованность проявляется на всех уровнях биосистем и характеризуется высокой устойчивостью биологического вида и его формы. На уровне макромолекул это свойство обеспечивается репликацией макромолекул, на уровне клетки - делением, на уровне особи и популяции - воспроизведением особей путем размножения.
В качестве биологических объектов или систем, которые использует биотехнология, прежде всего необходимо назвать одноклеточные микроорганизмы, а также животные и растительные клетки. Выбор этих объектов обусловлен следующими моментами:
1. Клетки являются своего рода “биофабриками”, вырабатывающими в процессе жизнедеятельности разнообразные ценные продукты: белки, жиры, углеводы, витамины, нуклеиновые кислоты, аминокислоты, антибиотики, гормоны, антитела, антигены, ферменты, спирты и пр. Многие из этих продуктов, крайне необходимые в жизни человека, пока недоступны для получения “небиотехноло-гическими” способами из-за дефицитности или высокой стоимости сырья или же сложности технологических процессов;
2. Клетки чрезвычайно быстро воспроизводятся. Так, бактериальная клетка делится через каждые 20-60 мин., дрожжевая - через каждые 1,5-2 часа, животная - через 24 часа, что позволяет за относительно короткое время искусственно нарастить на сравнительно дешёвых и недефицитных питательных средах в промышленных масштабах огромные количества биомассы микробных, животных или растительных клеток. Например, в биореакторе ёмкостью 100 м3 за 2-3 суток можно вырастить 1016 - 1018 микробных клеток. В процессе жизнедеятельности клеток при их выращивании в среду поступает большое количество ценных продуктов, а сами клетки представляют собой кладовые этих продуктов;
3. Биосинтез сложных веществ, таких как белки, антибиотики, антигены, антитела и др. значительно экономичнее и технологически доступнее, чем химический синтез. При этом исходное сырьё для биосинтеза, как правило, проще и доступнее, чем сырьё для других видов синтеза. Для биосинтеза используют отходы сельскохозяйственной, рыбной продукции, пищевой промышленности, растительное сырьё (молочная сыворотка, дрожжи, древесина, меласса и др.);
4. Возможность проведения биотехнологического процесса в промышленных масштабах, т.е. наличие соответствующего технологического оборудования, доступность сырья, технологии переработки и т.д.
Таким образом, природа дала в руки исследователям живую систему, содержащую и синтезирующую уникальные компоненты, и в первую очередь нуклеиновые кислоты, с открытием которых и начала бурно развиваться биотехнология и мировая наука в целом.
Объектами биотехнологии являются вирусы, бактерии, грибы, протозойные организмы, клетки (ткани) растений, животных и человека, вещества биологического проихождения (например, ферменты, простагландины, лектины, нуклеиновые кислоты), молекулы.
В этой связи можно сказать, что объекты биотехнологии относятся либо к микроорганизмам, либо к растительным и животным клеткам. В свою очередь организм можно охарактеризовать как систему экономного, сложнейшего, компактного, целенаправленного синтеза, устойчиво и активно протекающего при оптимальном поддержании всех необходимых параметров.
Методы, применяемые в биотехнологии определяются двумя уровнями: клеточным и молекулярным. Тот и другой определяются биобъектами.
В первом случае дело имеют с бактериальными клетками - для получения вакцинных препаратов, актиномицетов - при получении антибиотиков, микромицетов - при получении лимонной кислоты, животных клеток - при изготовлении противовирусных вакцин, клеток человека - при изготовлении интерферона и др.
Во втором случае дело имеют с молекулами, например с нуклеиновыми кислотами. Однако в конечной стадии молекулярный уровень трансформируется в клеточный.
Клетки животных и растений, микробные клетки в процессе жизнедеятельности (ассимиляции и диссимиляции) образуют новые продукты и выделяют метаболиты разнообразного физико-химического состава и биологического действия.
При росте клетки в ней осуществляется огромное число катализируемых ферментами реакций, в результате которых образуются промежуточные соединения, которые в свою очередь превращаются в структуры клетки. К промежуточным соединениям, к строительным “кирпичикам” относятся 20 аминокислот, 4 рибонуклеотида, 4 дезоксирибонуклеотида, 10 витаминов, моносахара, жирные кислоты, гексозамины. Из этих “кирпичиков” строятся “блоки”: примерно 2000 белков, ДНК, три типа РНК, полисахариды, липиды, ферменты. Образующиеся “блоки” идут на строительство клеточных структур: ядро, рибосомы, мембрана, клеточная стенка, митохондрии, жгутики и пр., из которых состоит клетка (табл. 1.1.).
Таблица 1.1. Схема прохождения “биологического синтеза” клетки и
