- •Лекция 1. Введение. Дисциплина Навигация. Лоция. История судовождения.
- •Главная задача судоводителя – провести судно из одного пункта в другой наивыгоднейшим путем и в кратчайший срок, учитывая все обстоятельства плавания, безопасно для людей, груза и самого судна.
- •Лекция 2. Форма и размеры Земли. Элементы земного эллипсоида
- •Элементы основных референц-эллипсоидов (из табл. 2.23 «мт-2000»)
- •Дополнительные данные к эллипсоиду Красовского
- •Радиусы кривизны земного эллипсоида.
- •Лекция 3. Основные точки, линии и круги на земной поверхности.
- •Лекция 4. Географические координаты. Разность широт и разность долгот.
- •Географические координаты некоторых портов Мира
- •Разности широт и долгот.
- •Лекция 5. Определение направлений в море. Системы деления горизонта.
- •Системы деления горизонта. Круговая система деления горизонта .
- •Полукруговая система деления горизонта.
- •Четвертная система деления горизонта.
- •Румбовая система деления горизонта.
- •Румбы в градусной мере (т. 41 «мт-75», т. 5.13 «мт-2000»)
- •Лекция 6. Линии и углы в плоскости истинного горизонта.
- •Лекция 7. Дальность видимого горизонта. Дальность видимости предметов в море.
- •Дальность видимости ориентиров в море.
- •Расчет дальностей видимости: а) Видимого горизонта (De) и ориентира (dп)
- •Б) Открытие огня маяка
- •Лекция 8. Земной магнетизм и его элементы. Магнитное склонение судового компаса.
- •Лекция 9. Судовой магнетизм и его элементы. Девиация магнитного компаса. Компасные направления. Поправка магнитного компаса и ее определение.
- •I. Определение девиации по створу, магнитное направление которого известно.
- •II. Определение девиации по створу, магнитное направление которого неизвестно.
- •IV. Определение девиации по пеленгам небесного светила.
- •V. Определение девиации способом «взаимных пеленгов».
- •VI. Определение девиации по сличению показаний двух компасов
- •Расчет истинных направлений по магнитному компасу.
- •Задачи на приведение магнитного склонения (d) к году плавания и расчета поправки магнитного компаса (δмк) (год плавания – 2008 г.; δ − из табл. 3.1)
- •Задачи на перевод и исправление румбов.
- •Девиация магнитного компаса (учебная).
- •Лекция 10. Свойства гироскопа. Превращение гироскопа в гирокомпас. Способы приведення гирокомпаса в меридиан
- •Лекция 11. Гирокомпасные курсы и пеленги. Поправка гирокомпаса и способы ее определения
- •Расчет истинных направлений по гирокомпасу.
- •Лекция 12. Определение скорости судна и пройденных им расстояний. Поправка лага. Коэффициент лага.
- •Принципы измерения скорости судна.
- •Лекция 13. Графическое счисление пути судна c учетом дрейфа. Прямая и обратная задачи.
- •Требования к оформлению счисления пути судна на карте
- •8.1.2. Определение угла дрейфа от ветра
- •1. Расчет пути судна по известному истинному курсу и углу α.
- •2. Расчет истинного и компасного курсов по известным линии пути при дрейфе и значению угла дрейфа.
- •4. Предвычисление времени и отсчета лага прихода судна в заданную точку.
- •Лекция 14. Графическое счисление пути судна c учетом течения. Прямая и обратная задачи.
- •Из точки начала учета течения (т. О) проводим заданную линию пути при течении – пУβ ( ) 117,0°. → ее направление снимаем с карты.
- •Лекция 15. Графическое счисление координат судна с учетом дрейфа и течения. Навигационные створы, назначение, устройство и составные части.
- •Примеры решения задач по учету дрейфа от ветра и течения а) расчет значения пУβ при учете постоянного течения (мнк № 32106 или № 3207)
- •Б) расчет значения гирокомпасного курса (гкк) для задания его рулевому при учете течения
- •В) расчет значения компасного (по магнитному компасу) курса для задания его рулевому при совместном учете дрейфа от ветра (α) и течения (β)
- •Лекция 16. Циркуляция судна и ее графический учет.Прямая и обратная задача.
- •Графический учет циркуляции при счислении пути судна
- •Определение точки окончания поворота при известной точке начала поворота и известному новому курсу.
- •Определение точки начала поворота для выхода на заданную линию курса.
- •Лекция 17. Картографические проекции, используемые в навигации. Классификация.
- •Классификация картографических проекций
- •Лекция 18. Проекция Меркатора, уравнение. Единицы длины на меркаторской карте.
- •Уравнение проекции Меркатора.
- •Единицы длины на карте меркаторской проекции.
- •Меридиональные части (выдержка).
- •Длина минуты дуги меридиана и параллели (из табл. 2.29 «мт-2000»).
- •Построение меркаторской карты.
- •Лекция 19. Масштаб навигационной карты. Предельная точность масштаба.
- •Перечень литературы
- •Кудрявцев в.Г. Давыдов а.И. Навигация и лоция.
Лекция 11. Гирокомпасные курсы и пеленги. Поправка гирокомпаса и способы ее определения
План лекции:
Преимущества и недостатки гирокомпасов.
Принцип определения направлений с помощью гирокомпасов
Погрешности гирокомпасов.
Расчет поправки гирокомпаса.
Способы определения поправки гирокомпаса
Литература: в соответствии с порядковым номером Перечня - 5,9,10,11,12
Магнитный компас был первым в истории мореплавания прибором для ориентирования в море по направлению.
Достоинства этого компаса:
немедленная готовность к работе;
простота устройства;
относительная дешевизна производства;
высокая надежность и долговечность.
Основной его недостаток – невысокая точность показаний.
Источниками погрешностей магнитного компаса являются:
неточное знание элементов земного магнетизма;
нестабильность корабельного (судового) магнитного и электромагнитного полей;
ускорения, сообщаемые магнитной системе компаса на качке и при изменении судном курса и скорости;
трение в подвесе магнитной системы.
И хотя в настоящее время его наличие обязательно на каждом судне, магнитный компас используется в качестве резервного курсоуказателя.
Основными приборами курсоуказания являются сейчас гироскопические курсоуказатели: гирокомпас, гироазимут, гироазимут-горизонт и др.
Основой всех гироскопических курсоуказателей является гироскоп (быстро вращающееся твердое тело), а работа этих курсоуказателей основана на свойстве гироскопа сохранять неизменным направление оси вращения в пространстве без действия моментов внешних сил.
Если взять идеально изготовленный свободный гироскоп (центр тяжести совпадает с его геометрическим центром и исключены силы трения в осях его подвеса), то его главная ось будет сохранять свое направление в пространстве постоянным, но такой гироскоп не будет постоянно указывать направление меридиана, т.е. учитывать суточное вращение Земли.
В гирокомпасах элементом, указующим направление меридиана, служит чувствительный элемент (ЧЭ), представляющий собой гиросферу с двумя гироскопами, соединенными между собой так, что может изменяться угол между их осями. Кроме того, центр тяжести ЧЭ гирокомпаса смещен относительно центра подвеса на определенную величину.
Смещение центра тяжести ЧЭ гирокомпаса вниз относительно центра подвеса приводит к тому, что главная ось гироскопа, будучи отклоненной от меридиана, с течением времени будет поворачиваться относительно центра подвеса в сторону меридиана и через какое-то время «придет в меридиан». Время прихода в меридиан зависит от начального угла отклонения ЧЭ от истинного меридиана и широты места.
(от 2,5 до 7 часов) – от т. I до т. VIII (рис. 4.1).
Рис.11.1. Кривая прихода гирокомпаса в меридиан
Для сокращения этого времени гирокомпасы имеют устройство для ускоренного приведения в меридиан. Если с помощью такого устройства установить и удерживать ЧЭ ГК в меридиане с точностью до 2÷3°, то время прихода в положение равновесия сокращается до 1÷1,5 часов (min 45 мин.)
Главная ось ЧЭ работающего ГК на движущемся судне вследствие наличия динамических и статических погрешностей располагается по направлению гироскопического меридиана, не совпадающего с истинным меридианом.
Динамические погрешности:
скоростная погрешность, которая возникает вследствие угловой скорости вращения плоскости истинного горизонта из-за движения судна по поверхности Земли. Эта погрешность устраняется в ГК с помощью специального счетно-решающего механизма-корректора ГК (вводом в него ИК, V, φ);
инерционные погрешности I и II рода, которые возникают при изменении курса и скорости судна. ГК по окончании маневра приходит в новое положение равновесия через 25-30 мин. Эти погрешности устраняются в ГК регулировкой периода незатухающих колебаний ЧЭ ГК (84,3 мин.) и применением масляного успокоителя в ЧЭ;
погрешность от качки, которая обусловлена раскачиванием ЧЭ ГК относительно его главной оси. Исключается стабилизацией ЧЭ в плоскости горизонта.
Статические погрешности:
наличие трения в подвесах гиромоторов;
непостоянство скорости вращения роторов гиромоторов;
неточная установка основного прибора в ДП судна;
действие магнитных полей.
Эти погрешности, характеризующие устойчивость работы ГК на неподвижном основании, определяются опытным путем.
Если удастся исключить все указанные погрешности, то главная ось ЧЭ ГК устанавливается в направлении истинного меридиана (NИ), а следящая система позволяет непосредственно снимать это направление и передавать на репитеры ГК.
Направляющий момент ГК во много раз больше, чем у МК, и не зависит от магнитного поля Земли. Однако с увеличением широты (φ) он уменьшается пропорционально cos φ, и в высоких широтах (> 75°) ГК работает менее надежно.
Другой вид гироскопического указателя – гироазимут – работает устойчиво как в низких, так и в высоких широтах.
Гироазимутами (ГА) называются гироскопические приборы, предназначенные для сохранения заданного азимутального направления.
В гироазимутах применяются гироскопы с подвесом на шарикоподшипниках или с аэродинамическим подвесом. Первый представляет собой гирокамеру, в которой на шарикоподшипниковых опорах вращается дисковый ротор с утяжеленным ободом. У второго гироскопа ротор, имеющий форму шара, при работе находится во взвешенном в воздухе состоянии (шаровой гироскоп).
В отличие от ГК у ЧЭ любого ГА его центр тяжести должен быть совмещен с точкой подвеса. По этой причине ГА не обладает избирательностью по отношению к плоскости меридиана, но и не имеет инерционных погрешностей.
С помощью системы горизонтальной коррекции главная ось ЧЭ ГА принудительно удерживается в плоскости горизонта.
С помощью азимутального корректора создается момент внешней силы, который вызывает прецессию главной оси ЧЭ ГА в плоскости горизонта, что и позволяет ГА сохранять неизменным свое первоначальное направление (учитываются: 1) ω – угловая скорость вращения Земли; 2) R – радиус Земли; 3) φ – широта места; 4) V – скорость судна; 5) ИК – истинный курс судна; 6) ωД – угловая скорость остаточного дрейфа ЧЭ ГА).
Из-за неточного знания φ, V, ИК, ωД – фактическая скорость прецессии главной оси ЧЭ ГА будет отличаться от ее действительной величины. Это различие приведет к появлению изменяющейся во времени погрешности курса.
Общая погрешность ГА включает в себя:
широтную погрешность (текущая широта – φТ отличается от расчетной φ0);
скоростную погрешность (max при плавании в высоких широтах и на больших скоростях);
погрешность от дрейфа (имеет сложный характер).
Основным критерием качества работы ГА является остаточная скорость ухода.
