Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
65
Добавлен:
15.11.2014
Размер:
633.56 Кб
Скачать

3.2 Modeling Structure–Property Relationships in Random Cellular Materials 287

Closed-Cell Cellular Solids, Acta Mater. 2001, 49, 189–197.

27Garboczi, E.J. and Day, A.R., An Algorithm for Computing the Effective Linear Elastic Properties of Heterogeneous Materials:

Three-Dimensional Results for Composites with Equal Phase Poisson Ratios, J. Mech. Phys. Solids 1995, 43, 1349–1362.

28Weaire, D. and Fortes, M.A., Stress and Strain in Liquid and Solid Foams, Adv. Phys. 1994, 43(6), 685–738.

29Kraynik, A.M., Foam Structure: From Soap Froth to Solid Foams, Mater. Res. Bull. 2003, 4, 275–278.

30Arns, C.H., Knackstedt, M.A., and Mecke, K.R., Reconstructing Complex Materials via Effective Grain Shapes, Phys. Rev. Lett 2003, 91, 215506-1.

31Stoyan, D., Kendall, W.S., and Mecke, J.,

Stochastic Geometry and its Applications, Wiley, Chichester, 2nd ed., 1995.

32Oger, L., Gervois, A., Troadec, J.P., and Rivier, N., Voronoi Tesselation of Packings of Spheres: Topological Correlation and Statistics, Phil. Mag. B 1996, 74, 177–197.

33Van der Burg, M.W.D., Shulmeister, V.,

Van der Geissen, E., and Marissen, R., On the Linear Elastic Properties of Regular and Random Open-Cell Foams Models, J. Cell. Plast.

1997, 33, 31–54.

34Colombo, P. and Hellmann, J.R., Ceramic Foams from Preceramic Polymers, Mater. Res. Innovat. 2002, 6, 260–272.

35Serra, J., Image Analysis and Mathematical Morphology, Academic Press, London, 1988.

36Cahn, J.W., Phase Seperation by Spinodal Decomposition in Isotropic Systems, J. Chem. Phys. 1965, 42, 93–99.

37Adler, P.M., Porous Media, ButterworthHeinemann, Boston, 1992.

38Berk, N.F., Scattering Properties of a Model Bicontinuous Structure with a Well Defined Length Scale, Phys. Rev. Lett. 1987, 58, 2718–2721.

39Roberts, A.P. and Teubner, M., Transport Properties of Heterogeneous Materials Derived from Gaussian Random Fields: Bounds and Simulation., Phys. Rev. E 1995, 51, 4141–4154.

40McGrath, K.M., Dabbs, D.M., Yao, N., Aksay, I.A., and Gruner, S.M., Formation of a

Silicate L-3 Phase with Continuously Adjustable Pore Sizes, Science 1997, 277, 552–556.

41Roberts, A.P., Morphology and Thermal Conductivity of Model Organic Aerogels, Phys. Rev. E 1997, 55, 1286–1289.

42Roberts, A.P. and Garboczi, E.J., Elastic Properties of Model Random Three-Dimensional Open-Cell Solids, J. Mech. Phys. Solids 2002,

50, 33–55.

43Quiblier, J.A., A New Three-Dimensional Modeling Technique for Studying Porous Media, J. Colloid Interface Sci. 1984, 98, 84–102.

44Roberts, A.P., Statistical Reconstruction of Three-Dimensional Porous Media from TwoDimensional Images, Phys. Rev. E 1997, 56, 3203–3212.

45Yeong, C.L.Y. and Torquato, S., Reconstructing Random Media. II. Three Dimensional Media from Two Dimensional Cuts, Phys.

Rev. E 1998, 58, 224–233.

46Roberts, A.P. and Garboczi, E.J., Elastic Properties of Model Porous Ceramics, J. Am. Ceram. Soc. 2000, 83(12), 3041–3048.

47Day, A.R., Snyder, K.A., Garboczi, E.J., and Thorpe, M.F., The Elastic Moduli of Sheet Containing Spherical Holes, J. Mech. Phys. Solids 1992, 40, 1031–1051.

48Cherkaev, A.V., Lurie, K.A., and Milton, G.W., Invariant Properties of the Stress in Plane Elasticity and Equivalence Classes of Composites, Proc. R. Soc. Lond. A 1992, 438, 519–529.

49Thorpe, M.F. and Jasiuk, I., New Results in the Theory of Elasticity for Two-Dimensional Composites, Proc. Roy. Soc. Lond. A 1992,

438, 531–544.

50Zeschky, J., Lo, J.H., Scheffler, M., Hoeppel, H.-W., Arnold, M., and Greil, P., Polysilox- ane-Derived Ceramic Foam for the Reinforcement of Mg Alloy, Z. Metallkd. 2002, 93, 812–818.

51Richard, P., Oger, L., Troadec, J.P., and Gervois, A., Tessellation of Binary Assemblies of Spheres, Physica A 1998, 259, 205–221.

52Arns, C.H., The Influence of Morphology on Physical Properties of Reservoir Rocks,

Ph.D. thesis, Petroleum Engineering, UNSW,

2002.

53Saadatfar, M., Knackstedt, M.A., Arns, C.H., Sakellariou, A., Senden, T.J.S., Sheppard, A.P., Sok, R.M., Steininger, H., and Schrof, W., Polymeric Foam Properties Derived From 3D Images, Physica A 2004, 1, 131–136.

288 Part 3 Structure

54Hagiwara, H. and Green, D.J., Elastic Behavior of Open-Cell Alumina, J. Am. Ceram. Soc. 1987, 70(11), 811–15.

55Lederman, J.M., The Prediction of the Tensile Properties of Flexible Foams, J. Appl. Polym. Sci. 1971, 15, 693–703.

56Morgan, J.S., Wood, J.L., and Bradt, R.C., Cell Size Effects on the Strength of Foamed Glass,

Mater. Sci. Eng. 1981, 47(1), 37–42.

57Zwissler, J.G. and Adams, M.A., Fracture Mechanics of Cellular Glass, in R.C. Bradt, A.G. Evans, D.P.H. Hasselman, and

F.F. Lange (eds.), Fracture Mechanics of Ceramics, Plenum Press, New York, vol. 6, 1983, pp. 211–241.

58Green, D.J., Fabrication and Properties of Lightweight Ceramics Produced by Sintering of Hollow Spheres, J. Am. Ceram. Soc. 1985, 68(7), 403.

59Walsh, J.B., Brace, W.F., and England, A.W., Effect of Porosity on Compressibility of Glass, J. Am. Ceram. Soc. 1965, 48(12), 605–608.

Соседние файлы в папке Cellular Ceramics