Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава6.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
687.62 Кб
Скачать

6.4.3. Критерий согласия Пирсона p[χ2]

Для оценки согласия эмпирических данных (x1, х2,…, хп) и предполагаемого закона распределения используется расхождение между эмпирической и теоретической Р(х) вероятностью отдельных значений или интервалов значений случайной величины.

Если число значений дискретной случайной величины X ограничено 1, ξ2,…,ξk) и каждое ξj (j=1, 2, …, k) встречается в выборке (имеющегося ряда наблюдений) не менее 5 раз, то расчеты критерия согласия производятся по вероятности, эмпирической и теоретической, каждого значения ξj.

Если X является непрерывной случайной величиной или возможное число значений X велико так, что каждое или некоторые значения ξ встречаются менее 5 раз, то необходимо использовать метод группировки данных и перейти к рассмотрению дискретной системы, в которой рассматриваются вероятности отдельных интервалов значений X.

Пусть имеется выборка x1, x2, ..., хп. Значения выборки оформлены в виде статистического ряда распределения (см. разд. 4.3), в котором указаны эмпирические вероятности (относительная частота) отдельных значений или интервалов значений X. (Отдельные значения или интервалы значений X здесь и дальше обозна­чим через ζj (j=1, 2, …, k), через k- число отдельных значений или интервалов значений). Здесь же приводятся вероятности значений ζ j, определенные по предполагаемому теоретическому закону распределения.

В качестве меры расхождения между теоретической и эмпири­ческой вероятностью принимается сумма квадратов отклонений взятых с некоторыми весами Сj:

(6.9)

Веса Cj вводятся потому, что в общем случае относящиеся к различным разрядам отклонения нельзя считать равноправными по значимости. Действительно, одно и то же ∆Pj может быть малозначительным, если сама вероятность Pj(ζ) велика, и очень за­метным, если она мала. Поэтому естественно, что Сj берутся об­ратно пропорциональными Pj(ζ). Пирсон показал, что закон распределения

если нулевая гипотеза верна, обладает рядом интересных свойств: он практически не зависит от закона распределения X и от числа опытов п, а зависит только от числа к. При больших значениях п этот закон приближается к так называемому распределению χ2, т. е. можно принять, что

(6.10)

Распределением χ2 с v степенями свободы называется распределение суммы квадратов v независимых нормированных случайных величин, каждая из которых подчинена нормальному закону распределения с математическим ожиданием, равным нулю, и дисперсией, равной единице. Это распределение характеризуется плотностью вероятностей

(6.11)

где v —число степеней свободы

(6.12)

Г (v/2) —значение гамма-функции (см. гл. 4).

На основе формул (6.11) и (6,12) составлены таблицы значений χ2 для различных значений обеспеченности и числа степеней свободы (см., например, работу [ ], прилож. ). По этой таблице можно определить вероятность события , где χ2 – значение, рассчитанное для данной нулевой гипотезы. Если вероятность ока­жется меньше заданного уровня значимости, то гипотеза опровергается. Аналогично можно сравнивать рассчитанное значение χ2 с табличным при данных v и α. Если , то гипотеза опровергается.

Для обоснованного применения критерия согласия χ2 необходимо иметь ввиду, что при выводе закона распределения χ2 пред­полагается, что биномиальное распределение частоты превышения может быть сведено к нормальному. Однако соответствую­щий предельный переход осуществляется достаточно быстро, если ни одна из вероятностей или Pi(x) не очень мала. Поэтому при практическом применении критерия согласия Р (χ2) необходимо частоты крайних разрядов, представляющих обычно малые числа, объединять между собой.

Считается, что использование распределения χ2 в качестве критерия согласия возможно только в тех случаях, когда длина вы­борки п ≥ 50, а частота отдельных значений или интервалов значений X (в том числе полученная за счет объединения крайних интервалов) не меньше 5.

Недостатком метода является то, что группировка данных по интервалам в случае непрерывной случайной величины или большого числа возможных ее значений приводит к некоторой потере информации. Кроме того, элементы неопределенности и возможной неоднозначности решений вносятся при назначении числа ин­тервалов и длины самих интервалов.

К достоинствам критерия χ2 следует отнести универсальность — независимость от закона распределения; возможность использования для данных нечислового характера; состоятельность.

В некоторых случаях, для оценки согласия законов распределения по критеоию Пирсона можно воспользоваться предложением В. А. Романовского. Он предложил простое правило, в значитель­ной степени облегчающее применение критерия согласия Пирсона. Это правило основывается на том, что

(6.13)

и вероятность значений χ2, отклоняющихся от М(χ2), меньше, чем на 3 , т. е. на 3 в ту или другую сторону, близка к единице. Отсюда, если

(6.14)

то расхождение можно считать существенным, гипотеза опровергается, в противном случае — гипотеза не опровергается (при уровне значимости 0,3 %).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]