- •История и методология науки и техники
- •Энергетика и электротехника
- •Введение
- •1.Этапы развития науки об электричестве
- •1.1. Начало науки об электричестве
- •1.2.История развития электротехники
- •4. Закон электромагнитной индукции.
- •1.3. Развитие электроэнергетического образования в России
- •1.3. Энергия, единицы измерения
- •Задача № 2.4
- •1.4. Способы и технологии получения энергии
- •1.5. Первичные энергоресурсы и их запасы
- •2. Состояние и прогнозы развития электроэнергетики России
- •2.1 Существующее состояние электроэнергетики
- •2.2. Техническая политика развития электроэнергетики на период до 2030 г.
- •2.3. Общие направления развития генерирующих мощностей
- •3. Производство электроэнергии
- •3.1. Потребление и производство электроэнергии
- •3.2. Основное оборудование электростанций
- •Силовые трансформаторы
- •Высоковольтные выключатели
- •Разъединители
- •4. Тепловые электрические станции
- •4.1. Технологическая схема преобразования энергии на тэс
- •4.2. Основное оборудование блока тэс
- •4.3. Повышение кпд тэс
- •4.4. Проблемы экологии тэс
- •5. Гидравлические электрические станции
- •6. Атомные электрические станции
- •6.1. Этапы освоения ядерной энергии
- •6.2. Аэс на тепловых нейтронах
- •6.3. Реакторы на быстрых нейтронах
- •7. Нетрадиционные возобновляемые источники энергии
- •7.1. Виды возобновляемой энергии
- •7.2. Использование солнечной энергии
- •7.3. Геотермальные электростанции
- •7.4. Ветровая энергия
- •7.5. Малые гидроэлектростанции
- •7.6. Использование энергии биомассы
- •7.7. Энергия мирового океана
- •8. Энергетические системы
- •8.1. Этапы развития энергетики страны
- •8.2. Основные понятия об электрической системе
- •9. Управление в энергосистемах
- •10. Основы использования пакета LabView
- •10.1. Структура языка LabView
- •Инструментальный набор (Tools Palette)
- •2. Набор приборов (Controls Palette)
- •3. Функциональный набор (Function Рalette)
- •10.2. Основы графического программирования
- •10.3.Подпрограммы LabView
- •Заключение
- •Библиографический список
6. Атомные электрические станции
6.1. Этапы освоения ядерной энергии
Открытие и использование ядерной энергии является одним из крупнейших событий прошедшего века. К сожалению, это величайшее достижение науки заявило о себе огромными разрушениями японских городов Хиросима и Нагасаки, на которые в августе 1945 года были сброшены американские атомные бомбы. Но затем наступил и июнь 1954 года, когда в Советском Союзе в г. Обнинске была пущена первая в мире атомная электрическая станция мощностью 5 МВт, открывшая дорогу мирному использованию энергии атома. 27 июня 1954 года признан в мире как день рождения атомной энергетики. Работы над проектами энергетических реакторов начались сразу же после успешного испытания в 1949 году отечественного ядерного оружия и велись теми же темпами.
Ядерная энергетика обязана своим появлением в первую очередь природе открытого в 1932 г. нейтрона. Нейтроны входят в состав всех ядер, кроме ядра водорода. Связанные нейтроны в ядре существуют бесконечно долго. В свободном виде они не долговечны, так как или распадаются с периодом полураспада 11,7 мин, превращаясь в протон и испуская при этом электрон и нейтрино, или быстро захватываются ядрами атомов.
По значению энергии нейтронов Еп их подразделяют на тепловые, промежуточные и быстрые. Тепловыми называют такие нейтроны, скорость которых равна скорости их теплового движения, устанавливающейся при тепловом равновесии со средой.
В 1938 году немецкие физики О. Ган и Ф. Штрасман обнаружили, что в результате бомбардировки урана нейтронами образуются ядра новых элементов, в том числе бария. Вскоре австрийские физики Л. Майтнер и О. Фриш установили, что ядро изотопа урана с атомным весом 235 под воздействием нейтрона разбивается на два осколка. Этот процесс был назван делением ядер.
В 1940 году советские ученые Г.Н. Флеров и К.А. Петржак обнаружили процесс самопроизвольного деления ядер атомов, являющегося разновидностью радиоактивного распада ядра. При делении ядер тяжелых элементов (уран, плутоний, торий) масса новых элементов оказывается меньше массы исходных ядер, т.е. в результате реакции деления происходит потеря массы, сопровождаемая большим выделением энергии. При этом число нейтронов, испускаемых при делении ядра 235U оказывается равным 2 или 3, что позволяет осуществить цепную реакцию.
Все эти открытия были сделаны накануне второй мировой войны, развязанной фашистской Германией, и стали основой драматической гонки за лидерство в создании атомной бомбы. Первый атомный реактор был пущен в 1942 году в США под руководством Э. Ферми, а первый в Европе был построен в СССР в 1946 году под руководством И.В. Курчатова. Успешно завершив разработку вслед за США ядерного оружия советские ученые стали лидерами в мирном применении атомной энергии.
Современная ядерная энергетика основана на использования энергии, выделяющейся при делении природного изотопа урана-235 или получаемых искусственным путем изотопа урана-233 и плуто- ния-239, которые принято называть делящимися материалами или ядерным топливом. Природный уран содержит 99,28 % 238U и всего 0,71 % 235U и 0,006 % 233U.
Самоподдерживающаяся цепная реакция деления ядер тяжелых элементов состоит в том, что при соединении нейтрона с ядром образуется возбужденное ядро, которое может оказаться настолько неустойчивым, что распадается на два осколка – два ядра более лёгких элементов с испусканием двух или трех новых нейтронов, вызывающих деление следующих ядер. Отношение числа вновь созданных нейтронов к соответствующему числу исходных нейтронов называется коэффициентом размножения, который для реакции с 235U на медленных нейтронах равен 2,46. Каждый из испускаемых при делении ядер нейтронов обладает значительной энергией, достаточной для деления всех изотопов урана, а также 232Th и 239Рu. Однако если энергию нейтронов уменьшить до 0,025– 0,30 эВ, то такие тепловые нейтроны будут не способны вызвать деление ядер 238U и 232Th.
Появляющиеся при делении ядер нейтроны подразделяются на мгновенные и запаздывающие. Мгновенные нейтроны составляют более 99% нейтронов деления. Запаздывающие нейтроны испускаются осколками деления в среднем через 12,4 с после момента деления ядра и составляют менее 1% нейтронов деления. Несмотря на это, они играют огромную роль в управлении цепной реакцией деления ядер и регулировании выделяемой энергии.
Технологический процесс получения энергии путем расщепления ядер тяжелых элементов намного сложнее процессов, основанных на сжигании топлива, и требует более тонкой и надежной системы регулирования. Нарушение устойчивости регулируемой цепной реакции может привести к непоправимым последствиям. Но, несмотря на эти сложности и риски после пуска первой АЭС начинается бурный рост атомной энергетики. За четверть века пройден путь от мощности в 5 МВт до крупнейших атомных электростанций с энергоблоками единичной мощностью по 1000 МВт.
Установленная мощность атомных электростанций мира на 2011 год превысила 350 млн. кВт. Общее число реакторов, работающих на АЭС мира, превысило 450. В США работает более 100 реакторов с общей мощностью 101,5 млн. кВт, во Франции – 58 реакторов на 63 млн. кВт, в Японии – 52 реактора на 45 млн. кВт , в России – 33 реактора на 23 млн. кВт.
В чем причина такого стремительного роста? Главная положительная особенность ядерного горючего, используемого на атомных электростанциях, состоит в его высокой «калорийности», что позволяет свести к минимуму транспортные расходы, связанные с доставкой топлива. Из 1 кг урана можно получить столько же теплоты, сколько при сжигании примерно 3000 т каменного угля. Поэтому АЭС в первую очередь целесообразны в тех регионах, где развита промышленность и ощутим дефицит органического топлива. Эксплуатация атомных электростанций в России дает в целом по стране снижение расхода топлива в энергетике на 35– 40 млн. т у. т. ежегодно.
Атомные электростанции имеют большое преимущество перед ТЭС в отношении сохранения чистоты атмосферного воздуха, так как они работают без выбросов золы, вредных оксидов серы и азота. В связи с истощением запасов органического топлива атомные электростанции сегодня представляют пока единственный реальный путь обеспечения быстро растущих потребностей человечества в электроэнергии.
Быстрое развитие атомной энергетики стало возможным благодаря большому размаху работ по ядерной физике, созданию и освоению новых типов. атомных реакторов, Но были и периоды. негативного отношении к АЭС после Чернобыля (!986 г.) и Фукусимы (2011 г.), которые заканчивались новым разворотом в сторону ядерной энергетики.
