Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
БИЛЕТЫ ГЕНЕТИКА.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
950.12 Кб
Скачать
  1. Предмет и задачи медицинской генетики

Медицинская генетика изучает роль наследственности в патологии человека, закономерности передачи от поколения к поколению наследственных болезней, разрабатывает методы диагностики, лечения и профилактики наследственной патологии, включая болезни с наследственной предрасположенностью. Результатом исследований в этом направлении становятся медицинские и генетические открытия и достижения, направленные на борьбу с болезнями и улучшение здоровья людей.

ЗАДАЧИ МЕДИЦИНСКОЙ ГЕНЕТИКИ

• Изучение наследственных болезней, закономерностей их наследования, особенностей патогенеза, лечения и профилактики;

• Изучение наследственного предрасположения и резистентности к наследственным болезням;

• Изучение патологической наследственности;

• Исследование теоретических медико-биологических проблем (биосинтез видоспецифических белков, синтез иммунных антител, генетические механизмы канцерогенеза);

• Изучение вопросов генной инженерии, разрабатывающей методы лечения наследственных болезней путем переноса генов нормального метаболизма в ДНК больного.

Клиническая генетика — прикладной раздел медицинской генетики. Ее достижения применяются для решения клинических проблем пациентов или их семей. Она дает ответ на вопросы: какая болезнь у пациента (диагноз), как ему помочь (лечение), как предупредить рождение больного потомства (прогноз и профилактика), как диагностировать и уменьшить вероятность развития болезни с наследственным предрасположением. В настоящее время в клинической генетике используются, с одной стороны, генетические методы (генетический анализ, молекулярно-биологические, цитогенетические, биохимические, иммуногенетические) и, с другой стороны, все современные методы клинического обследования: ультразвуковое исследование (УЗИ), магнитно-резонансная томография (МРТ), компьютерная томография (КТ), позитронно-эмиссионная томография (ПЭТ).

2. Хромосомная теория наследственности

Сформулирована в 1911 г. американским ученым Т. Морганом. Ее сущность за­ключается в следующем:

—          основным материальным носителем наследственности явля­ются хромосомы с локализованными в них генами; - гены наследственно дискретны, относительно стабильны, но при этом могут мутировать;

—  гены в хромосомах расположены линейно, каждый ген имеет определенное место (локус) в хромосоме;

—  гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются совместно;

—  число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;

—  сцепление генов может нарушаться в результате кроссинговера;

—  частота кроссинговера прямо пропорциональна расстоянию между генами.

Значение этой теории заключается в том, что она дала объяснение законам Менделя, вскрыла цитологические основы наследования признаков и генетические основы теории естественного отбора.

3. Кариотип человека. Классификация хромосом человека. Методы исследования кариотипа

Кариотип – совокупность всех характеристик хромосом, таких как структура, расположение, последовательность, форма, количество и размер.

У каждого вида живых организмов существует свой кариотип, состав которого влияет на обеспечение нормальной жизнедеятельности.

Хромосомы подразделяют на аутосомы (одинаковые у обоих полов) и гетерохромосомы, или половые хромосомы (разный набор у мужских и женских особей). Например, кариотип человека содержит 22 пары аутосом и две половые хромосомы – ХХ уженщины и XY y мужчины (44,ХУ и 44,XYсоответственно). Соматические клетки организмов содержат диплоидный (двойной) набор хромосом, а гаметы – гаплоидный (одинарный).

Анализ кариотипа происходит на стадии митоза хромосом, т.е. при делении клеток, когда меняются их размеры и, как следствие, именно в этот момент они доступны для распознавания.

Исследование всех элементов кариотипа человека производится при помощи метода специальной окраски и последующего изучения хромосом в световом микроскопе. Данный метод помогает увидеть размеры и формы хромосом, их структуру, а также расположение первичных и вторичных перетяжек и неоднородных участков на них.

Изображение, видимое в микроскопе, периодически фотографируют, чтобы зафиксировать изменения, затем по совокупности изображений составляют конкретную картину. Эта информация позволяет произвести распределение хромосом на определенные группы. В итоге весь диплоидный набор хромосом человека составляют 46 элементов, включающих в себя 22 пары аутосом и одну пару половых хромосом - XX - у женщин (две большие хромосомы) и XY- у мужчин (одна большая и одна маленькая хромосомы). Это и есть нормальный кариотип, отклонение от которого и провоцирует проявления уродства, пороков развития, бесплодия и невынашивания беременности.