- •I. Read the text. The Nature of Electricity
- •I. Read the text. Electric current
- •II. Guess the meaning of the following international words:
- •III. Give the English equivalents for the words and word combinations below:
- •IV. Give Russian equivalents for the following:
- •V. Say whether these sentences are true or false:
- •VI. Fill in the blanks, using the words from the box:
- •Direct current, solids, conduct, electric current, liquids,
- •VII. State the questions to the underlined words:
- •VIII. Say some sentences about the types of electric current and its properties. Unit 3
- •I. Read the text.
- •Effects produced by a current
- •III. Guess the meaning of the following international words:
- •IV. Insert words and expressions:
- •V. Choose the correct translation:
- •VI. Answer the questions:
- •VIII. Speak about the principal effects of an electric current, using the text and chart above. Unit 4
- •I. Read the text.
- •Electric Circuits
- •II. Guess the meaning of the following international words:
- •III. Give the English equivalents for the following words and word combinations:
- •IV. Say whether these sentences are true or false:
- •V. Complete the sentences using the text:
- •VI. Answer the questions:
- •VII. Talk on the types of electric circuits. Unit 5
- •I. Read the text.
- •Alternating Current
- •II. Guess the meaning of the following international words:
- •IV. Give the English equivalents for the words below:
- •I. Read the text. Conductors and insulators
- •Give the Russian equivalents for the words and word combinations below:
- •Find in the text the sentences with the following related words and translate them:
- •State questions to the underlined words:
- •Say whether these sentences are true or false:
- •VII. Talk on the conducting ability of various substances and their application in electrical engineering. Use the table in Task IV. Unit 7
- •I. Read the text.
- •Semiconductors
- •II. Give the English equivalents for the words and word combinations below:
- •III. Guess the meaning of the following international words:
- •V. Insert words and expressions:
- •VI. Answer the questions:
- •VII. Talk on the properties of semiconductors and their practical application. Unit 8
- •I. Read the text.
- •Electricity and magnetism text 1 Electromotive Force
- •Text 2 Electromagnetic Induction
- •Text 3 electromotive force and resistance
- •I. Read the text. Dynamos
- •II. Fill in the gaps with the words given below:
- •III. Find the Russian equivalents for the following English words and word combinations:
- •IV. Answer the questions.
- •V. Talk on the dynamo action. Unit 10
- •I. Read the text.
- •Generators
- •II. Give the Russian equivalents for the following English words and word combinations:
- •III. Fill in the blanks
- •V. Speak on the following points:
- •Unit 11
- •I. Read the text. Main Structural Elements of a d. C. Machine
- •II. Translate the following phrases, using the given variants of translation.
- •IV. Arrange synonyms in pairs and memorize them:
- •V. Write out the names of the machine parts and describe their operational characteristics. Unit 12
- •I. Read the text.
- •The Alternator
- •Unit 13
- •I. Read the text. The Induction Motor
- •VI. Discuss the following points:
- •Unit 14
- •I. Read the text.
- •Types of Induction Motors
- •Single-phase motor
- •Text 2 three – phase induction motor
- •III. Translate the sentences from the text paying attention to the Nominative Absolute Participle Constructions:
- •IV. Answer the following questions:
- •V. Work out the plan of the text.
- •VI. State 5 questions to the text. Unit 15
- •I. Read the text.
- •Transformers
- •II. Guess the meaning of the following international words:
- •Unit 16
- •I. Read the text. Types of transformers
- •II. Guess the meaning of the following international words:
- •III. Give the English equivalents for the words below:
- •Unit 17
- •I. Read the text. Measurements of Electric Values
- •II. Guess the meaning of the following international words:
- •III. Give the English equivalents to the words below:
- •IV. Translate into Russian the words and expression from the text:
- •V. Insert the words:
- •VI. Answer the questions:
- •VII. State questions to the underlined words:
- •VIII. Topics for discussion:
- •Unit 18
- •I. Read the text. Main Types of Ammeters and Voltmeters
- •VII. Topics for discussion:
- •Unit 19
- •I. Read the text. Electrical Measuring Instruments and Units
- •VII. Describe different types of measuring instruments and units, using the table in Task V.
- •George symon ohm
- •Text 3 Faraday's Law
- •Text 4 emil lenz. Lenz's Law
- •Text 5 Kirchhoff's Laws
- •Text 6 a Great Invention of a Russian Scientist
- •Text 7 charles coulomb
- •Text 8 andre marie ampere
- •Text 9 james clerc maxwell
- •Text 10 World Brightest Electric Lamps
- •Text 11 early history of electricity
- •Text 12 from the history of electricity
- •Text 13 Nature of Electricity
- •Text 14 atmospheric electricity
- •Text 15 magnetism
- •Text 16 magnetic effect of an electric current
- •Text 2 power transmission
- •Text 3 hydroelectric power-station
- •Text 4 nuclear power plant
- •Text 5 Electronics and Technical Progress
- •Text 6 Protection and control equipment
- •Text 7 The Nucleus
- •Text 8 What Is An Electron?
- •Text 9 Electrons and electronic charges
- •Text 10 Polarity
- •Text 11 Energy Conversion
- •Power engineering dictionary
- •Список использованной литературы
- •400131, Г. Волгоград, пр. Ленина, 28, корп. 1.
- •403874, Г. Камышин, ул. Ленина, 5, каб. 4.5
Text 7 charles coulomb
CHARLES COULOMB (1736–1806), a member of the Paris Academy of Sciences, an outstanding French physicist in the period from 1785 to 1789 stated the law of electrostatic and magnetic interaction. His work in this field laid foundation for the future theoretic investigations in the electrostatics and magnetstatics.
Coulomb’s law is one of the principal laws of electrostatics. It established a relationship between the force of interaction of two static electric charges, their quantities, and the distance between them. According to Coulomb’s law the absolute value of the force of repulsion of two like charges or the force of attraction between two unlike charges el and e2, which size is much less than the distance between them, is inversely proportional to the square of the distance between them. He also stated the laws of rotation, dry friction, laws of interaction between magnetic poles. All these laws were named in honor of Ch. Coulomb.
Text 8 andre marie ampere
ANDRE MARIE AMPERE (1775–1836) was an outstanding physicist and mathematician of French origin. He is one of the founders of modern electrodynamics. He was born in aristocratic family in Lyon. By the age of 14 he has read all the 20 volumes of “The Encyclopedia” by Diderot and D’Alambert. His scientific interests were very diverse.
In 1801 Ampere headed the Chair of Physics in Burge, in 1805 he became a teacher of physics at the Polytechnical School in Paris. Since 1814 he was elected Member of The Institute, which later transformed into the French Academy of Sciences. After 1824 he occupied the post of professor at the Ecole Normale in Paris.
Ampere’s studies on the effects of the electric current flow on the magnetic needle were his greatest contribution to physics. In 1820 in the report to the Paris Academy, he made the announcement of the so-called “Ampere Rule”, which is since used to define the deflection of the needle affected by the electric current. This led him to the discovery of interactions between electric currents. The fundamental laws of this interaction got his name.
Text 9 james clerc maxwell
JAMES CLERC MAXWELL, a British physicist, was born in 1831. In 1847–50, he studied at the Edinborough University and later in Cambridge. On graduating from the Cambridge University, he was offered a post of a teacher there. In 1860 he headed the Chair of Physics in the King’s College in London. In 1871 he went back to Cambridge where he headed a newly-organized laboratory named in honor of H. Cavendish.
His scientific interests lay in the field of electro-magnetism, molecular physics, optics, mechanics, and other. Maxwell published his first scientific paper when he was only 15. He founded the theory of electro-magnetic field, the electromagnetic theory of light. He is credited with the studies of the Saturnus rings. He described all known facts of electrodynamics by means of system of equations, known as Maxwell’s equations of electrodynamics.
Text 10 World Brightest Electric Lamps
The world’s brightest lamp, able to light an area of 250 acres was produced by the Moscow Electric Lamp Works not long ago. It was designed by Victor Vasiliyev.
The lamp, which is named after the bright star Sirius is a three – phase 200 – kilowatt discharge lamp. The working part of the lamp is a double walled quartz tube which is 10 inches in diameter and about 40 inches long. The lamp is started by a special high voltage flash and cooled by water circulating between the inner and outer tubes.
One of these lamps is now installed nearly 200 feet above ground level in the engineering pavilion of the Industrial Exhibition Moscow. The Sirius lamp can be particularly useful on big construction sites.
