- •Вниманию авторов! Требования к оформлению пособия.
- •Тема 1. Введение в биостатистику. Типы данных.
- •Номинальные переменные
- •Порядковые переменные
- •Количественные данные. Интервальные переменные
- •Задача-эталон
- •Решение
- •План исследования
- •Тема 2. Варияционный ряд. Числовая характеристика дискретного статистического ряда. Средние величины. Полигон.
- •Задача-эталон
- •Тема 3. Дисперсия. Стандартное отклонение. Стандартная ошибка среднего. Доверительный интервал.
- •Задача-эталон
- •Тема 4. Интервальный статистический дискретный ряд распределения. Числовые характеристики интервального статистического ряда. Гистограмма.
- •График 1. Гистограмма
- •Задача-эталон
- •Тема 5. Нулевая гипотеза. Альтернативная гипотеза. Ошибки первого и второго рода.
- •Основные свойства гипотезы
- •Статистические гипотезы.
- •Обобщённая методика проверки статистических гипотез
- •Принятие неправильного решения
- •Задача-эталон
- •Решение
- •Тема 6. Нормальное распределение, характеристика, графическая проверка.
- •Значение
- •Нормальное распределение в природе и приложениях
- •Для оценки «крутизны» (островершинности) распределения пользуются характеристикой – эксцессом.
- •Проверка на нормальность(r-ч.0,06%)
- •Задача-эталон Критерии Колмогорова – Смирнова
- •Тема 8. Критерий Стюдента
- •Задача-эталон
- •Тема 9. Дисперсионный анализ
- •Задача-эталон
- •Тема 10. Отношение шансов. Относительный риск. Таблица сопряженности.
- •1. История разработки показателя отношения шансов
- •2. Для чего используется показатель отношения шансов?
- •3. Условия и ограничения применения отношения шансов
- •4. Как рассчитать отношение шансов?
- •5. Как интерпретировать значение отношения шансов?
- •Задача-эталон
- •1. История разработки показателя относительного риска
- •2. Для чего используется относительный риск?
- •3. Условия и ограничения применения относительного риска
- •4. Как рассчитать относительный риск?
- •5. Как интерпретировать значение относительного риска?
- •Задача-эталон
- •Тема 11. Критерий χ2 Пирсона.
- •1. История разработки критерия χ2
- •2. Для чего используется критерий χ2 Пирсона?
- •3. Условия и ограничения применения критерия хи-квадрат Пирсона
- •4. Как рассчитать критерий хи-квадрат Пирсона?
- •5. Как интерпретировать значение критерия хи-квадрат Пирсона?
- •6. Пример расчета критерия хи-квадрат Пирсона
- •Задача-эталон
- •Анализ таблицы сопряженности
- •Тема12. Корреляционный анализ
- •Задача-эталон
- •Задача-эталон
- •Тема 13. Анализ выживаемости.
- •Задача-эталон
5. Как интерпретировать значение критерия хи-квадрат Пирсона?
В том случае, если полученное значение критерия χ2 больше критического, делаем вывод о наличии статистической взаимосвязи между изучаемым фактором риска и исходом при соответствующем уровне значимости.
6. Пример расчета критерия хи-квадрат Пирсона
Определим статистическую значимость влияния фактора курения на частоту случаев артериальной гипертонии по рассмотренной выше таблице:
|
Артериальная гипертония есть (1) |
Артериальной гипертонии нет (0) |
Всего |
Курящие (1) |
40 |
30 |
70 |
Некурящие (0) |
32 |
48 |
80 |
Всего |
72 |
78 |
150 |
Рассчитываем ожидаемые значения для каждой ячейки:
Артериальная гипертония есть (1)
Артериальной гипертонии нет (0)
Всего
Курящие (1)
(70*72)/150 = 33.6
(70*78)/150 = 36.4
70
Некурящие (0)
(80*72)/150 = 38.4
(80*78)/150 = 41.6
80
Всего
72
78
150
Находим значение критерия хи-квадрат Пирсона:
χ2 = (40-33.6)2/33.6 + (30-36.4)2/36.4 + (32-38.4)2/38.4 + (48-41.6)2/41.6 = 4.396.
Число степеней свободы f = (2-1)*(2-1) = 1. Находим по таблице критическое значение критерия хи-квадрат Пирсона, которое при уровне значимости p=0.05 и числе степеней свободы 1 составляет 3.841.
Сравниваем полученное значение критерия хи-квадрат с критическим: 4.396 > 3.841, следовательно зависимость частоты случаев артериальной гипертонии от наличия курения - статистически значима. Уровень значимости данной взаимосвязи соответствует p<0.05.
Также критерий хи-квадрат Пирсона вычисляется по формуле
(29)
Но для таблицы 2х2 более точные результаты дает критерий с поправкой Йетса
Если
то Н(0) принимается,
В
случае
принимается Н(1)
Когда число наблюдений невелико и в клетках таблицы встречается частота меньше 5, критерий хи-квадрат неприменим и для проверки гипотез используется точный критерий Фишера. Процедура вычисления этого критерия достаточно трудоемка и в этом случае лучше воспользоваться компьютерными программами статанализа.
По таблице сопряженности можно вычислить меру связи между двумя качественными признаками – ею является коэффициент ассоциации Юла Q (аналог коэффициента корреляции)
Q лежит в пределах от 0 до 1. Близкий к единице коэффициент свидетельствует о сильной связи между признаками. При равенстве его нулю – связь отсутствует.
Аналогично используется коэффициент фи-квадрат (φ2)
(32)
Задача-эталон
В таблице описывается связь между частотой мутации у групп дрозофил с подкормкой и без подкормки
группы |
Число культур |
всего |
|
Давшие мутации |
Не давшие мутации |
||
С подкормкой |
357 |
2399 |
2756 |
Без подкормкой |
80 |
725 |
805 |
всего |
437 |
3124 |
3561 |
