- •Вниманию авторов! Требования к оформлению пособия.
- •Тема 1. Введение в биостатистику. Типы данных.
- •Номинальные переменные
- •Порядковые переменные
- •Количественные данные. Интервальные переменные
- •Задача-эталон
- •Решение
- •План исследования
- •Тема 2. Варияционный ряд. Числовая характеристика дискретного статистического ряда. Средние величины. Полигон.
- •Задача-эталон
- •Тема 3. Дисперсия. Стандартное отклонение. Стандартная ошибка среднего. Доверительный интервал.
- •Задача-эталон
- •Тема 4. Интервальный статистический дискретный ряд распределения. Числовые характеристики интервального статистического ряда. Гистограмма.
- •График 1. Гистограмма
- •Задача-эталон
- •Тема 5. Нулевая гипотеза. Альтернативная гипотеза. Ошибки первого и второго рода.
- •Основные свойства гипотезы
- •Статистические гипотезы.
- •Обобщённая методика проверки статистических гипотез
- •Принятие неправильного решения
- •Задача-эталон
- •Решение
- •Тема 6. Нормальное распределение, характеристика, графическая проверка.
- •Значение
- •Нормальное распределение в природе и приложениях
- •Для оценки «крутизны» (островершинности) распределения пользуются характеристикой – эксцессом.
- •Проверка на нормальность(r-ч.0,06%)
- •Задача-эталон Критерии Колмогорова – Смирнова
- •Тема 8. Критерий Стюдента
- •Задача-эталон
- •Тема 9. Дисперсионный анализ
- •Задача-эталон
- •Тема 10. Отношение шансов. Относительный риск. Таблица сопряженности.
- •1. История разработки показателя отношения шансов
- •2. Для чего используется показатель отношения шансов?
- •3. Условия и ограничения применения отношения шансов
- •4. Как рассчитать отношение шансов?
- •5. Как интерпретировать значение отношения шансов?
- •Задача-эталон
- •1. История разработки показателя относительного риска
- •2. Для чего используется относительный риск?
- •3. Условия и ограничения применения относительного риска
- •4. Как рассчитать относительный риск?
- •5. Как интерпретировать значение относительного риска?
- •Задача-эталон
- •Тема 11. Критерий χ2 Пирсона.
- •1. История разработки критерия χ2
- •2. Для чего используется критерий χ2 Пирсона?
- •3. Условия и ограничения применения критерия хи-квадрат Пирсона
- •4. Как рассчитать критерий хи-квадрат Пирсона?
- •5. Как интерпретировать значение критерия хи-квадрат Пирсона?
- •6. Пример расчета критерия хи-квадрат Пирсона
- •Задача-эталон
- •Анализ таблицы сопряженности
- •Тема12. Корреляционный анализ
- •Задача-эталон
- •Задача-эталон
- •Тема 13. Анализ выживаемости.
- •Задача-эталон
5. Как интерпретировать значение отношения шансов?
Если отношение шансов и его 95% ДИ превышает 1, то это означает, что шансы обнаружить фактор риска больше в группе с наличием исхода. Т.е. фактор имеет прямую связь с вероятностью наступления исхода или это «фактор агрессии». В данном случае значение р<0,05
Отношение шансов и его 95% ДИ, имеющее значение меньше 1, свидетельствует о том, что шансы обнаружить фактор риска больше во второй группе. Т.е. фактор имеет обратную связь с вероятностью наступления исхода или это «фактор защиты». В данном случае значение р<0,05
При отношении шансов, равном единице, шансы обнаружить фактор риска в сравниваемых группах одинакова. Соответственно, фактор не оказывает никакого воздействия на вероятность исхода. В данном случае значение р>0,05
Если 95% ДИ ОШ включает в себя 1,то нельзя дать однозначного заключения о влиянии фактора на развитие исхода. Соответственно, фактор не оказывает никакого воздействия на вероятность исхода. В данном случае значение р>0,05
Дополнительно в каждом случае обязательно оценивается статистическая значимость отношения шансов исходя из значений 95% доверительного интервала.
Если доверительный интервал не включает 1, т.е. оба значения границ или выше, или ниже 1, делается вывод о статистической значимости выявленной связи между фактором и исходом при уровне значимости p<0,05.
Если доверительный интервал включает 1, т.е. его верхняя граница больше 1, а нижняя - меньше 1, делается вывод об отсутствии статистической значимости связи между фактором и исходом при уровне значимости p>0,05.
Задача-эталон
Представим две группы: первая состояла из 200 женщин, у которых был диагностирован врожденный порок развития плода (Исход+). Из них курили во время беременности (Фактор+) - 50 человек (А), являлись некурящими (Фактор-) - 150 человек (С).
Вторую группу составили 100 женщин без признаков ВПР плода (Исход -) среди которых курили во время беременности (Фактор+) 10 человек (B), не курили (Фактор-) - 90 человек (D).
1. Составим четырехпольную таблицу сопряженности:
|
ВПР плода диагностирован |
ВПР плода отсутствует |
Всего |
Курящие |
50 (А) |
10 (В) |
60 |
Некурящие |
150 (С) |
90 (D) |
240 |
Всего |
200 |
100 |
300 |
2. Рассчитаем значение отношения шансов:
OR = (A * D) / (B * C) = (50 * 90) / (150 * 10) = 3.
3. Найдем границы 95% CI. Значение нижней границы, рассчитанной по указанной выше формуле составило 1,45, а верхней - 6,21.
Интерпретация результатов (1 и 2 интерпретация равнозначны):
исследование показало, что шансы встретить курящую женщину среди пациенток с диагностированным ВПР плода в 3 раза выше, чем среди женщин без признаков ВПР плода. Наблюдаемая зависимость является статистически значимой, так как 95% CI не включает 1, значения его нижней и верхней границ больше 1.
Шансы встретить курящую женщину среди пациенток с диагностированным ВПР плода на 200% выше, чем среди женщин без признаков ВПР плода. Наблюдаемая зависимость является статистически значимой, так как 95% CI не включает 1, значения его нижней и верхней границ больше 1.
ОТНОСИТЕЛЬНЫЙ РИСК
Риск – это вероятность появления определенного исхода, например, болезни или травмы. Риск может принимать значения от 0 (вероятность наступления исхода отсутствует) до 1 (во всех случаях ожидается неблагоприятный исход). В медицинской статистике, как правило, изучаются изменения риска наступления исхода в зависимости от какого-либо фактора. Пациенты условно разделяются на 2 группы, на одну из которых фактор влияет, на другую – нет.
Относительный риск – это отношение частоты исходов среди исследуемых, на которых оказывал влияние изучаемый фактор, к частоте исходов среди исследуемых, не подвергавшихся влиянию этого фактора. В научной литературе часто используют сокращенное название показателя - ОР или RR (от англ. "relative risk").
