- •Вниманию авторов! Требования к оформлению пособия.
- •Тема 1. Введение в биостатистику. Типы данных.
- •Номинальные переменные
- •Порядковые переменные
- •Количественные данные. Интервальные переменные
- •Задача-эталон
- •Решение
- •План исследования
- •Тема 2. Варияционный ряд. Числовая характеристика дискретного статистического ряда. Средние величины. Полигон.
- •Задача-эталон
- •Тема 3. Дисперсия. Стандартное отклонение. Стандартная ошибка среднего. Доверительный интервал.
- •Задача-эталон
- •Тема 4. Интервальный статистический дискретный ряд распределения. Числовые характеристики интервального статистического ряда. Гистограмма.
- •График 1. Гистограмма
- •Задача-эталон
- •Тема 5. Нулевая гипотеза. Альтернативная гипотеза. Ошибки первого и второго рода.
- •Основные свойства гипотезы
- •Статистические гипотезы.
- •Обобщённая методика проверки статистических гипотез
- •Принятие неправильного решения
- •Задача-эталон
- •Решение
- •Тема 6. Нормальное распределение, характеристика, графическая проверка.
- •Значение
- •Нормальное распределение в природе и приложениях
- •Для оценки «крутизны» (островершинности) распределения пользуются характеристикой – эксцессом.
- •Проверка на нормальность(r-ч.0,06%)
- •Задача-эталон Критерии Колмогорова – Смирнова
- •Тема 8. Критерий Стюдента
- •Задача-эталон
- •Тема 9. Дисперсионный анализ
- •Задача-эталон
- •Тема 10. Отношение шансов. Относительный риск. Таблица сопряженности.
- •1. История разработки показателя отношения шансов
- •2. Для чего используется показатель отношения шансов?
- •3. Условия и ограничения применения отношения шансов
- •4. Как рассчитать отношение шансов?
- •5. Как интерпретировать значение отношения шансов?
- •Задача-эталон
- •1. История разработки показателя относительного риска
- •2. Для чего используется относительный риск?
- •3. Условия и ограничения применения относительного риска
- •4. Как рассчитать относительный риск?
- •5. Как интерпретировать значение относительного риска?
- •Задача-эталон
- •Тема 11. Критерий χ2 Пирсона.
- •1. История разработки критерия χ2
- •2. Для чего используется критерий χ2 Пирсона?
- •3. Условия и ограничения применения критерия хи-квадрат Пирсона
- •4. Как рассчитать критерий хи-квадрат Пирсона?
- •5. Как интерпретировать значение критерия хи-квадрат Пирсона?
- •6. Пример расчета критерия хи-квадрат Пирсона
- •Задача-эталон
- •Анализ таблицы сопряженности
- •Тема12. Корреляционный анализ
- •Задача-эталон
- •Задача-эталон
- •Тема 13. Анализ выживаемости.
- •Задача-эталон
Тема 8. Критерий Стюдента
t-критерий Стьюдента – общее название для класса методов статистической проверки гипотез (статистических критериев), основанных на распределении Стьюдента. Наиболее частые случаи применения t-критерия связаны с проверкой равенства средних значений в двух выборках.
Для чего используется t-критерий Стьюдента? t-критерий Стьюдента используется для определения статистической значимости различий средних величин. Может применяться как в случаях сравнения независимых выборок (например, группы больных сахарным диабетом и группы здоровых), так и при сравнении связанных совокупностей (например, средняя частота пульса у одних и тех же пациентов до и после приема антиаритмического препарата).
В каких случаях можно использовать t-критерий Стьюдента? Для применения t-критерия Стьюдента необходимо, чтобы исходные данные имели нормальное распределение.
Критерий t-Стьюдента для одной выборки
Данный метод позволяет проверить гипотезу о том, что среднее значение изучаемого признака отличается от некоторого известного значения.
Таким образом, в ходе данной методики будет доказано, достоверно выше или достоверно ниже нормы, а также возможно и не отличается от среднего уровня развития исследуемого свойства.
Критерий t-Стьюдента для зависимых выборок
Этот метод позволяет проверить гипотезу о том, что средние значения двух генеральных совокупностей, из которых извлечены сравниваемые зависимые выборки, отличаются друг от друга. Зависимая выборка – когда определенные признак измерен на одной и той же выборке дважды, например, до и после воздействия, лечения и т.п.
Исходные предположения – 1) каждому представителю одной выборки поставлен в соответствие представитель другой выборки; 2) данные двух выборок положительно коррелируют; 3) распределение признака в обеих выборках приблизительно соответствует нормальному
Критерий t-Стьюдента для независимых выборок
Данный метод сравнения позволяет проверить гипотезу о том, что средние значения двух генеральных совокупностей, из которых извлечены сравниваемые независимые выборки, отличаются друг от друга.
Исходные предположения – 1) одна выборка извлекается из одной генеральной совокупности, а другая выборка, независимая от первой, извлекается из другой генеральной совокупности; 2) распределение признака в обеих выборках приблизительно соответствует нормальному; 3) дисперсии признака в 2-х выборках примерно одинаковы (гомогенны).
По результатам выборочных наблюдений находят выборочное среднее Хв, Ув и . дисперсию, а затем вычисляют экспериментальное значение критерий tэкс по формуле:
tэкс
=
nx, nу -объём выборок величин X, и У соответственно,полученное значение
tэкс сравнивают со значением критической точки t кр (Р1 t) распределения
Стьюдента, где f = nx + nу -2
Р уровень значимости = 0,05
Сравниваем критическое и рассчитанное значения критерия:
Если t экс < tқау - Но принимаем, то значение рассчитанного t-критерия Стьюдента меньше табличного, значит различия сравниваемых величин статистически не значимы
Если t экс > tқау - Но отвергаем, то рассчитанное значение t-критерия Стьюдента равно или больше критического, найденного по таблице, делаем вывод о статистической значимости различий между сравниваемыми величинами
