- •Сборник лекций
- •Курс: Третий
- •2. Горизонтальный транспорт генов у бактерий в природных экосистемах и его роль в эволюции и систематике прокариот
- •4. Механизмы, контролирующие генетическую изоляцию бактериального генома.
- •5. Эволюция бактериального генома.
- •1. Терминология и номенклатура, используемые в систематике прокариот
- •2. Фенотипическая систематика
- •4. Хемотаксономическая систематика
- •5. Геносистематика
- •1. Основные проблемы филогении прокариот.
- •2. Понятие о молекуле - хронометре
- •3. Концепция к. Вуза о трех линиях эволюции, трех формах жизни
- •4. Дистанционно-матричный метод построения филогенетических деревьев и их конструкции (веерообразная и сильно разветвленная дихотомическая). Гипотеза о. Кандлера о трех типах независимых проклеток
- •5. Методологические ловушки в филогенетической систематике микроорганизмов
- •1. Принципы построения идентификационных схем.
- •2. Общие правила при идентификации бактерий
- •3. Деление царства прокариот на высшие таксоны. Характеристика отделов
- •4. Группы прокариотных организмов и их основные представители
- •1. Сравнительная характеристика прокариот и эукариот
- •2. Основные принципы систематики эукариотных микроорганизмов
- •3. Группы низших эукариот
- •4. Фаготрофия и симбиоз – основные элементы существования протистов
- •5. Основы классификации вирусов
- •Лекция 2.1. Молекулярные и структурные аспекты организации архей. Общая характеристика. Систематика.
- •I. Положение архебактерий в системе царств органического мира
- •2. Характерные особенности отдельных групп архебактерий
- •3. Молекулярная биология архебактерий
- •4. Метаболизм архебактерий.
- •5. Структурная организация геномов архебактерий
- •1. Аэробные сероокислящие бактерии
- •2. Анаэробные серовосстанавливающие бактерии
- •3. Галофильные архебактерии.
- •4. Термоацидофильные микоплазмы
- •Раздел 1.
- •Раздел 2.
- •Раздел 3.
- •Раздел 4.
- •1. Классификация метанообразующих бактерий
- •2. Культурально-морфологические свойства метаногенов
- •3. Тип питания и метаболизм метанообразущих бактерий
- •4. Механизм энергетических процессов у метанообразущих бактерий
- •5. Местообитание и практическое применение метаногенов.
- •1. Пигменты фотосинтезирующих эубактерий
- •2. Строение фотосинтетического аппарата эубактерий
- •3. Группы фотосинтезирующих эубактерий
- •3. Цианобактерии
- •5. Прохлорофиты
- •1. Пурпурные бактерии
- •2. Зеленые эубактерии
- •3. Гелиобактерии
- •4. Распространение фототрофных эубактерий в природе
- •1. Явление автотрофии в микробиологии. Характеристика физиологических групп аэробных хемоавтотрофов
- •2. Нитрифицирующие бактерии
- •3. Бактерии, окисляющие серу
- •4. Железобактерии
- •5. Водородные бактерии
- •6. Метаболическая основа хемоавтотрофии
- •Явление облигатной автотрофии
- •Подавление роста органическими соединениями
- •1. Общая характеристика и систематика метаноокисляющих бактерий
- •2. Морфология вегетативных клеток
- •3. Ультратонкое строение клеток
- •4. Окисление углеродных соединений как основное свойство метанотрофов
- •5. Свойства метанотрофов в свете практического применения
- •2. Молочнокислое брожение и бактерии вызывающие данный процесс
- •3. Эубактерии осуществляющие спиртовое брожение
- •4. Пропионовокислое брожение
- •5. Клостридии и маслянокислый тип брожения
- •1. Системы классификации и таксономия дрожжей
- •2. Строение дрожжевой клетки
- •3. Питание и метаболизм дрожжей
- •4. Генетика дрожжей
- •5. Микробиологические аспекты практического использования дрожжей
- •1. Общая характеристика и систематика актиномицетов
- •Краткая характеристика групп родов Группа 22. Нокардиоформные актиномицеты
- •Группа 23. Роды с многогнездными спорангиями
- •Группа 25. Стрептомицеты и близкие роды
- •Группа 26. Мадуромицеты
- •Группа 29. Другие роды
- •2. Морфология актиномицетов.
- •3. Характеристика актиномицетов по химическому составу и строению клеточных стенок.
- •4. Питательные потребности и условия культивирования актиномицетов.
- •1.Общая характеристика скользящих организмов
- •2. Миксобактерии
- •3. Алгицидные миксобактерии, не образующие плодовых тел
- •4. Группа цитофаг
- •5. Нитчатые скользящие хемогетеротрофы
- •6. Нитчатые бактерии, окисляющие соединения серы
- •1. Общая характеристика бактерий, образующих эндоспоры
- •2. Аэробные спорообразующие бактерии (Род Bacillus)
- •3. Анаэробные спорообразующие бактерии: род clostridium
- •4. Другие спорообразующие бактерии
- •5. Спорообразование
5. Свойства метанотрофов в свете практического применения
Метанотрофные бактерии представляют значительный интерес как потенциальные объекты биотехнологии: для производства белка, ферментов, липидов, стеринов, антиоксидантов, пигментов, полисахаридов, факторов транспорта железа, первичных и вторичных метаболитов (аминокислоты, органические кислоты, растворители, витамины, алкалоиды, антибиотики), биотрансформации органических соединений, снижения содержания метана в угольных шахтах, создания биосенсоров и энергетических биоэлементов.
Исследования в области микробиологического синтеза белка на метане были начаты почти одновременно с разработкой процессов культивирования микроорганизмов на жидких углеводородах. Однако из-за низких выходов биомассы и трудностей конструктивного оформления технологического процесса разработка методов микробиологического получения белка на природном газе долго время находилась на стадии лабораторных исследований.
В результате выделения активных культур метанотрофов, а также достижения определенных успехов в разработке технологии непрерывного культивирования, стало возможным получать сравнительно высокие урожаи бактерий при таких скоростях протока, которые обеспечивают экономически приемлемую продуктивность процесса (1 г биомассы/л.час). В дальнейшем был осуществлен процесс непрерывного культивирования метанотрофов с высокими показателями по продуктивности (1,5-2 г/л.час). Сообщалось, что в хемостатном режиме в условиях диализного удаления внеклеточных метаболитов концентрация клеток метанотрофов может составлять 30 г/л.
Эти результаты, в основном, получены на смешанных культурах, которые, как считалось, способны достигать значительно больших, по сравнению с чистыми культурами метанотрофов, концентраций биомассы при меньшем времени генерации.
Мшенский (1979) первым экспериментально доказал возможность высокоэффективного процесса получения бактериальной биомассы чистых культур метанотрофов. Им была разработана минеральная среда с высоким содержанием ионов меди и определены условия культивирования чистой культуры Methylomonas methanica 12, позволившие на природном газе достичь производительности процесса 3,25 г/л-час.
Бактериальная биомасса, полученная на метане, представляет собой продукт с высоким содержанием витаминов и белка, в который входят все незаменимые аминокислоты. По составу аминокислот и витаминов биомассу метанотрофов можно сравнить с дрожжами, рыбной и соевой мукой, сухим молоком. В то же время метанотрофы превосходят дрожжи по содержанию рибофлавина, холина и витаминов В6 и В12. Содержание В12 в клетках метанотрофов составляло 8,9 мкг/г биомассы, а в смешанной культуре - до 42 мкг/г .
Использование метана для получения белка одноклеточных имеет ряд преимуществ по сравнению с жидкими углеводородами: большие запасы природного газа, хорошая его транспортабельность, возможность получения готового продукта без дополнительной очистки от субстрата.
Учитывая способность метанотрофных бактерий осуществлять трансформацию широкого спектра органических соединений, предлагается использовать эти организмы для очистки сточных вод от различных детергентов, пестицидов и других ксенобиотиков. В связи с актуальностью проблемы охраны окружающей среды от загрязнений практическая значимость исследований в этой области очевидна.
Помимо биомассы с помощью метанотрофов предлагается также получать и внеклеточные полисахариды. Methylocystis parvus OBBP при росте на средах с метанолом достигал концентрации биомассы 14,5 г/л, в которой содержалось 22% белка и 62% полисахарида, состоящего из глюкозы (82%) и рамнозы (14%). При этом скорость роста составляла 0,65 час-1. Термофильный метанотроф Н-2, продуцировал внеклеточные кислые полисахариды, содержащие глюкозу, маннозу, галактозамин и глюкуроновую кислоту, а также аминокислоты. На 3,6 г клеток синтезировалось 1,8 г олигосахаридов. О накоплении и экскреции полисахаридов культурами метанотрофов сообщалось и в других.
Довольно интересными представляются разработки биосенсоров метана и энергетических биоэлементов на основе метанотрофов. В одном из таких биоэлементов использованы клетки Methylomonas methanica. Элемент состоял из двухсекционной ячейки, в которой одна секция представляла собой катод; другая (анод) содержала клетки метанотрофа (0,5 х 109 кл/мл). Секции разделены двумя мембранами, между которыми вводили очищенный от кислорода азот для исключения переноса кислорода от катода к аноду. Элемент мог вырабатывать электроэнергию мощностью 2,8 микроватт/см2 при напряжении 0,35 вольта.
Японские исследователи для детекции метана создали сенсор на основе иммобилизованных клеток Methylomonas flagellata, совмещенный с кислородным электродом. Добавление метана в смеси с кислородом вызывало снижение концентрации кислорода по сравнению с контрольной ячейкой, что фиксировалось по разности потенциалов. В течение 3 минут выявлялась концентрация метана 6,6 мМ. Сенсор функционировал стабильно в течение 20 суток (500 определений).
Представляется перспективным использование метанотрофов для снижения концентрации метана в атмосфере угольных шахт. Особенностью метода является: (1) пневматическая обработка угольного пласта воздухом после нагнетания суспензии метанотрофов и (2) орошение суспензией метанотрофов сопутствующих пород выработанного пространства. При этом происходит интенсивное потребление метана бактериями, что приводит к снижению на 30-70% содержания метана в угольном пласте или атмосфере шахты.
СПЕЦКУРС «ЧАСТНАЯ МИКРОБИОЛОГИЯ. СИСТЕМАТИКА МИКРООРГАНИЗМОВ»
Лекция 5.1 Эубактерии, осуществляющие брожение. Характеристика. Химизм ферментативных процессов. Экология и биологическая роль в природе.
План лекции:
Характеристика брожения как способа получения энергии.
Молочнокислое брожение и бактерии вызывающие данный процесс.
Эубактерии осуществляющие спиртовое брожение.
Пропионовокислое брожение.
Клостридии и маслянокислый тип брожения.
1. Характеристика брожения как способа получение энергии.
Наиболее примитивным способом получения энергии, присущим определенным группам эубактерий, являются процессы брожения.
Брожение — это способ получения энергии, при котором АТФ образуется в процессе анаэробного окисления органических субстратов в реакциях субстратного фосфорилирования
Круг органических соединений, которые могут сбраживаться довольно широк. Это углеводы, спирты, органические кислоты, аминокислоты, пурины, пиримидины. Химическое вещество может быть подвергнуто сбраживанию, если оно содержит неполностью окисленные (или восстановленные) углеродные атомы.
Продуктами брожений; являются различные органические кислоты (молочная, масляная, уксусная, муравьиная), спирты (этиловый, бутиловый, пропиловый), ацетон, а также С02 и Н2. Обычно в процессе брожения образуется несколько продуктов. В зависимости от того, какой основной продукт накапливается в среде, различают молочнокислое, спиртовое, маслянокислое, пропионовокислое и другие виды брожений.
Все реакции субстратного фосфорилирования локализованы в цитозоле клетки. Это указывает на простоту химических механизмов, лежащих в основе субстратного фосфорилирования.
