- •Сборник лекций
- •Курс: Третий
- •2. Горизонтальный транспорт генов у бактерий в природных экосистемах и его роль в эволюции и систематике прокариот
- •4. Механизмы, контролирующие генетическую изоляцию бактериального генома.
- •5. Эволюция бактериального генома.
- •1. Терминология и номенклатура, используемые в систематике прокариот
- •2. Фенотипическая систематика
- •4. Хемотаксономическая систематика
- •5. Геносистематика
- •1. Основные проблемы филогении прокариот.
- •2. Понятие о молекуле - хронометре
- •3. Концепция к. Вуза о трех линиях эволюции, трех формах жизни
- •4. Дистанционно-матричный метод построения филогенетических деревьев и их конструкции (веерообразная и сильно разветвленная дихотомическая). Гипотеза о. Кандлера о трех типах независимых проклеток
- •5. Методологические ловушки в филогенетической систематике микроорганизмов
- •1. Принципы построения идентификационных схем.
- •2. Общие правила при идентификации бактерий
- •3. Деление царства прокариот на высшие таксоны. Характеристика отделов
- •4. Группы прокариотных организмов и их основные представители
- •1. Сравнительная характеристика прокариот и эукариот
- •2. Основные принципы систематики эукариотных микроорганизмов
- •3. Группы низших эукариот
- •4. Фаготрофия и симбиоз – основные элементы существования протистов
- •5. Основы классификации вирусов
- •Лекция 2.1. Молекулярные и структурные аспекты организации архей. Общая характеристика. Систематика.
- •I. Положение архебактерий в системе царств органического мира
- •2. Характерные особенности отдельных групп архебактерий
- •3. Молекулярная биология архебактерий
- •4. Метаболизм архебактерий.
- •5. Структурная организация геномов архебактерий
- •1. Аэробные сероокислящие бактерии
- •2. Анаэробные серовосстанавливающие бактерии
- •3. Галофильные архебактерии.
- •4. Термоацидофильные микоплазмы
- •Раздел 1.
- •Раздел 2.
- •Раздел 3.
- •Раздел 4.
- •1. Классификация метанообразующих бактерий
- •2. Культурально-морфологические свойства метаногенов
- •3. Тип питания и метаболизм метанообразущих бактерий
- •4. Механизм энергетических процессов у метанообразущих бактерий
- •5. Местообитание и практическое применение метаногенов.
- •1. Пигменты фотосинтезирующих эубактерий
- •2. Строение фотосинтетического аппарата эубактерий
- •3. Группы фотосинтезирующих эубактерий
- •3. Цианобактерии
- •5. Прохлорофиты
- •1. Пурпурные бактерии
- •2. Зеленые эубактерии
- •3. Гелиобактерии
- •4. Распространение фототрофных эубактерий в природе
- •1. Явление автотрофии в микробиологии. Характеристика физиологических групп аэробных хемоавтотрофов
- •2. Нитрифицирующие бактерии
- •3. Бактерии, окисляющие серу
- •4. Железобактерии
- •5. Водородные бактерии
- •6. Метаболическая основа хемоавтотрофии
- •Явление облигатной автотрофии
- •Подавление роста органическими соединениями
- •1. Общая характеристика и систематика метаноокисляющих бактерий
- •2. Морфология вегетативных клеток
- •3. Ультратонкое строение клеток
- •4. Окисление углеродных соединений как основное свойство метанотрофов
- •5. Свойства метанотрофов в свете практического применения
- •2. Молочнокислое брожение и бактерии вызывающие данный процесс
- •3. Эубактерии осуществляющие спиртовое брожение
- •4. Пропионовокислое брожение
- •5. Клостридии и маслянокислый тип брожения
- •1. Системы классификации и таксономия дрожжей
- •2. Строение дрожжевой клетки
- •3. Питание и метаболизм дрожжей
- •4. Генетика дрожжей
- •5. Микробиологические аспекты практического использования дрожжей
- •1. Общая характеристика и систематика актиномицетов
- •Краткая характеристика групп родов Группа 22. Нокардиоформные актиномицеты
- •Группа 23. Роды с многогнездными спорангиями
- •Группа 25. Стрептомицеты и близкие роды
- •Группа 26. Мадуромицеты
- •Группа 29. Другие роды
- •2. Морфология актиномицетов.
- •3. Характеристика актиномицетов по химическому составу и строению клеточных стенок.
- •4. Питательные потребности и условия культивирования актиномицетов.
- •1.Общая характеристика скользящих организмов
- •2. Миксобактерии
- •3. Алгицидные миксобактерии, не образующие плодовых тел
- •4. Группа цитофаг
- •5. Нитчатые скользящие хемогетеротрофы
- •6. Нитчатые бактерии, окисляющие соединения серы
- •1. Общая характеристика бактерий, образующих эндоспоры
- •2. Аэробные спорообразующие бактерии (Род Bacillus)
- •3. Анаэробные спорообразующие бактерии: род clostridium
- •4. Другие спорообразующие бактерии
- •5. Спорообразование
6. Метаболическая основа хемоавтотрофии
Убедительно показано, что у всех физиологических групп хемоавтотрофов ассимиляция СО2 происходит через реакции цикла Кальвина. Выращенные в хемоавтотрофных условиях клетки характеризуются высоким содержанием двух специфичных для данного метаболического пути ферментов - рибулозодифосфаткарбоксилазы и фосфорибулокиназы. Однако у факультативно автотрофных тиобацилл и у водородных бактерий синтез этих двух ферментов часто в той или иной степени подавляется, если клетки выращиваются на органических субстратах. Многие облигатно автотрофные тиобациллы и нитрифицирующие бактерии имеют особые характерные для прокариот образования, карбоксисомы, содержащие рибулозодифосфаткарбоксилазу.
Для осуществления ассимиляции СО2 хемоавтотрофы должны получать и АТФ, и восстановитель (восстановленный пиридиннуклеотид) путем окислительной диссимиляции неорганического субстрата. По урожаю биомассы (таблица 7) можно оценить относительную эффективность их получения разными организмами.
ТАБЛИЦА 7.- Урожай биомассы некоторых хемоавтотрофных бактерий 1
Организм
|
Биомасса
|
Pseudomonas facilis Thiobacillus neapolitanus Thiobacillus ferrooxidans
|
12 г на 1 г-моль Н2 4 г на 1 г-моль S2O32- 0,35 г на 1 г-атом Fe2+
|
1 Урожай выражен в граммах сухой биомассы клеток, синтезированной на грамм-молекулу или грамм-атом окисленного субстрата.
ОКИСЛЕНИЕ МОЛЕКУЛЯРНОГО ВОДОРОДА
В принципе генерация как АТФ, так и восстановленного пиридиннуклеотида не представляет особых сложностей, если окисление неорганического субстрата сопряжено, подобно окислению органических субстратов, с восстановлением НАД+. Часть образованного таким образом НАД.Н может окисляться в дыхательной цепи переноса электронов, что сопровождается синтезом АТФ при окислительном фосфорилировании, а часть использоваться для осуществления восстановительных реакций ассимиляции углерода. По-видимому, именно такая ситуация и имеет место у водородных бактерий, поскольку показано, что некоторые из них обладают растворимой гидрогеназой, которая катализирует реакцию
Этот фермент, выделенный из клеток Nocardia opaca, обладает двумя интересными свойствами. Во-первых, он чувствителен к кислороду и инактивируется на воздухе в нейтральной среде, а во-вторых, для его работы необходимы ионы Ni2+, которые могут быть заменены на Mg2+ (правда, с частичной потерей активности фермента).
Эти особенности гидрогеназы проливают свет на некоторые казавшиеся ранее странными особенности питания водородных бактерий. Так, было известно, что хотя окисляющие водород псевдомонады при выращивании на органических субстратах ведут себя как обычные аэробные организмы, некоторые из них при хемоавтотрофном росте становятся микроаэрофильными и развиваются за счет Н2 только тогда, когда парциальное давление кислорода оказывается значительно ниже, чем при обычных условиях в атмосфере.
ОКИСЛИТЕЛЬНОЕ ФОСФОРИЛИРОВАНИЕ И СИНТЕЗ ВОССТАНОВЛЕННЫХ ПИРИДИННУКЛЕОТИДОВ У ДРУГИХ ХЕМОАВТОТРОФОВ
Механизмы, посредством которых хемоавтотрофы, отличные от водородных бактерий, удовлетворяют свои синтетические потребности при окислении субстрата, представляются гораздо более сложными. В качестве примера можно рассмотреть бактерии, которые окисляют нитрит. У бактерий этой группы при окислении субстрата высвобождается только одна пара электронов:
Однако потенциал пары NO2- /NO3- (Е'0 =+0,42 В) гораздо выше потенциала, необходимого для осуществления сопряженной реакции
для которой Е'0 составляет —0,32 В.
Полученные из бесклеточных экстрактов Nitrobacter фракции частиц обладают системой переноса электронов и могут катализировать окисление нитрита кислородом. Исследование такой системы показало, что в ходе этой реакции происходит перенос электронов от нитрита на О2 через цитохромы а1 и а3, который сопровождается синтезом 1 моля АТФ на 1 моль окисляемого субстрата (рисунок 8). Таким образом, механизм генерации АТФ при таком типе хемоавтотрофии становится вполне понятным, но способ образования восстановленного пиридиннуклеотида по-прежнему неясен. Проведенные недавно исследования показали, что НАД+ в бесклеточной системе восстанавливается нитритом при добавлении в систему АТФ, который затрачивается на обратный перенос электронов от восстановленного цитохрома а1 (первого акцептора электронов в цепи переноса). Как схематически показано на рисунке 9, для осуществления реакций, приводящих к восстановлению НАД+, требуется несколько молейАТФ. Таким образом, часть энергии, полученной при окислении нитрита молекулярным кислородом (через посредство конечных компонентов цепи переноса), должна быть затрачена на то, чтобы перенести электроны от нитрита против термодинамического градиента и восстановить пиридиннуклеотид.
Полученные недавно данные показывают, что аналогичные процессы обратного переноса электронов требуются и для восстановления пиридиннуклеотидов за счет других неорганических субстратов, которые могут окислять хемоавтотрофы (Fe2+, NH3 и восстановленные соединения серы). Однако ни одна из этих систем не изучена пока так детально, как система окисления нитрита. Более того, во многом невыясненными остаются этапы реакций и биохимические механизмы, которые функционируют при окислении аммиака до нитрита и при окислении соединений восстановленной серы до сульфата. При окислении аммиака (валентность N равна—3) до нитрита (валентность N равна +3) атом азота теряет шесть электронов.
.
Рисунок 9. Возможный путь энергозависимого обратного переноса электронов от нитрита к НАД+ у Nltrobacter
Следовательно, этот процесс протекает с участием по крайней мере двух промежуточных продуктов, в которых атом азота имеет промежуточные валентности. Есть веские данные в пользу того, что первый этап этого процесса катализируется оксигеназой, которая присоединяет к аммиаку полученный от О2 атом кислорода, в результате чего образуется гидроксиламин (NH2OH) (валентность N равна-1). Каковы последующие этапы процесса, пока не известно. Возможно, имеет место следующая цепь реакций:
При окислении H2S до сульфата теряется восемь электронов. Поскольку у многих окисляющих H2S хемолитотрофов наблюдается быстрое внутриклеточное накопление элементарной серы, есть все основания считать, что это вещество является первым стабильным промежуточным продуктом, хотя ферментативный механизм его образования неизвестен. Предпоследним промежуточным продуктом является сульфит. Природа реакций, приводящих к его образованию, остается неясной, хотя предложено несколько возможных вариантов. Механизм окисления
Так как с помощью реакции, катализируемой аденилаткиназой, из АДФ может быть образован АТФ:
в результате фосфорилирования АМФ на уровне субстрата образуется АТФ.
