- •Сборник лекций
- •Курс: Третий
- •2. Горизонтальный транспорт генов у бактерий в природных экосистемах и его роль в эволюции и систематике прокариот
- •4. Механизмы, контролирующие генетическую изоляцию бактериального генома.
- •5. Эволюция бактериального генома.
- •1. Терминология и номенклатура, используемые в систематике прокариот
- •2. Фенотипическая систематика
- •4. Хемотаксономическая систематика
- •5. Геносистематика
- •1. Основные проблемы филогении прокариот.
- •2. Понятие о молекуле - хронометре
- •3. Концепция к. Вуза о трех линиях эволюции, трех формах жизни
- •4. Дистанционно-матричный метод построения филогенетических деревьев и их конструкции (веерообразная и сильно разветвленная дихотомическая). Гипотеза о. Кандлера о трех типах независимых проклеток
- •5. Методологические ловушки в филогенетической систематике микроорганизмов
- •1. Принципы построения идентификационных схем.
- •2. Общие правила при идентификации бактерий
- •3. Деление царства прокариот на высшие таксоны. Характеристика отделов
- •4. Группы прокариотных организмов и их основные представители
- •1. Сравнительная характеристика прокариот и эукариот
- •2. Основные принципы систематики эукариотных микроорганизмов
- •3. Группы низших эукариот
- •4. Фаготрофия и симбиоз – основные элементы существования протистов
- •5. Основы классификации вирусов
- •Лекция 2.1. Молекулярные и структурные аспекты организации архей. Общая характеристика. Систематика.
- •I. Положение архебактерий в системе царств органического мира
- •2. Характерные особенности отдельных групп архебактерий
- •3. Молекулярная биология архебактерий
- •4. Метаболизм архебактерий.
- •5. Структурная организация геномов архебактерий
- •1. Аэробные сероокислящие бактерии
- •2. Анаэробные серовосстанавливающие бактерии
- •3. Галофильные архебактерии.
- •4. Термоацидофильные микоплазмы
- •Раздел 1.
- •Раздел 2.
- •Раздел 3.
- •Раздел 4.
- •1. Классификация метанообразующих бактерий
- •2. Культурально-морфологические свойства метаногенов
- •3. Тип питания и метаболизм метанообразущих бактерий
- •4. Механизм энергетических процессов у метанообразущих бактерий
- •5. Местообитание и практическое применение метаногенов.
- •1. Пигменты фотосинтезирующих эубактерий
- •2. Строение фотосинтетического аппарата эубактерий
- •3. Группы фотосинтезирующих эубактерий
- •3. Цианобактерии
- •5. Прохлорофиты
- •1. Пурпурные бактерии
- •2. Зеленые эубактерии
- •3. Гелиобактерии
- •4. Распространение фототрофных эубактерий в природе
- •1. Явление автотрофии в микробиологии. Характеристика физиологических групп аэробных хемоавтотрофов
- •2. Нитрифицирующие бактерии
- •3. Бактерии, окисляющие серу
- •4. Железобактерии
- •5. Водородные бактерии
- •6. Метаболическая основа хемоавтотрофии
- •Явление облигатной автотрофии
- •Подавление роста органическими соединениями
- •1. Общая характеристика и систематика метаноокисляющих бактерий
- •2. Морфология вегетативных клеток
- •3. Ультратонкое строение клеток
- •4. Окисление углеродных соединений как основное свойство метанотрофов
- •5. Свойства метанотрофов в свете практического применения
- •2. Молочнокислое брожение и бактерии вызывающие данный процесс
- •3. Эубактерии осуществляющие спиртовое брожение
- •4. Пропионовокислое брожение
- •5. Клостридии и маслянокислый тип брожения
- •1. Системы классификации и таксономия дрожжей
- •2. Строение дрожжевой клетки
- •3. Питание и метаболизм дрожжей
- •4. Генетика дрожжей
- •5. Микробиологические аспекты практического использования дрожжей
- •1. Общая характеристика и систематика актиномицетов
- •Краткая характеристика групп родов Группа 22. Нокардиоформные актиномицеты
- •Группа 23. Роды с многогнездными спорангиями
- •Группа 25. Стрептомицеты и близкие роды
- •Группа 26. Мадуромицеты
- •Группа 29. Другие роды
- •2. Морфология актиномицетов.
- •3. Характеристика актиномицетов по химическому составу и строению клеточных стенок.
- •4. Питательные потребности и условия культивирования актиномицетов.
- •1.Общая характеристика скользящих организмов
- •2. Миксобактерии
- •3. Алгицидные миксобактерии, не образующие плодовых тел
- •4. Группа цитофаг
- •5. Нитчатые скользящие хемогетеротрофы
- •6. Нитчатые бактерии, окисляющие соединения серы
- •1. Общая характеристика бактерий, образующих эндоспоры
- •2. Аэробные спорообразующие бактерии (Род Bacillus)
- •3. Анаэробные спорообразующие бактерии: род clostridium
- •4. Другие спорообразующие бактерии
- •5. Спорообразование
3. Гелиобактерии
Недавно обнаружены строго анаэробные фототрофные бактерии, содержащие единственный бактериохлорофилл g, отсутствующий в других группах фотосинтезирующих эубактерий с бескислородным типом фотосинтеза. Описаны два вида, различающиеся морфологически: Heliobacterium chlorum — одиночные длинные палочки (1x7—10 мкм), способные передвигаться скольжением, и Heliobacillus mobilis — короткие палочковидные формы с перитрихиально расположенными жгутиками. Клеточная стенка грамотрицательного типа, но по нуклеотидной последовательности 16S рРНК и составу пептидогликана данные гелиобактерии близки к грамположительным эубактериям Bacillus subtilis.
В клетках помимо необычного бактериохлорофилла g обнаружено небольшое количество каротиноидов. Пигменты локализованы в ЦПМ, развитой системы внутрицитоплазматических мембран и хлоросом нет. Способ существования — облигатная фототрофия. Рост возможен только на свету в анаэробных условиях. Источниками углерода могут служить некоторые органические кислоты: уксусная, молочная, пировиноградная, масляная. Показана также возможность функционирования путей автотрофной фиксации СО2 (модифицированный и неполный восстановительный ЦТК). Дыхательный метаболизм отсутствует. Обнаруженные виды — активные азотфиксаторы.
Большой интерес к гелиобактериям связан с предположением, что они являются наиболее древними из существующих в настоящее время фотосинтезирующих эубактерий. Кроме того, на основании сходства между бактериохлорофиллом g и хлорофиллом с высказывается предположение о том, что гелиобактерии— предки пластид, содержащих хлорофилл с, имеющихся в группах бурых, диатомовых, золотистых и других водорослей.
4. Распространение фототрофных эубактерий в природе
Три основных фактора определяют распространение фототрофных эубактерии в природе: свет, молекулярный кислород и питательные вещества. Потребности в разных частях солнечного спектра для фотосинтеза определяются набором светособирающих пигментов. Эубактерии с кислородным типом фотосинтеза поглощают свет в том же диапазоне длин волн, что водоросли и высшие растения. Пурпурные и зеленые бактерии часто развиваются в водоемах под более или менее плотным поверхностным слоем, состоящим из цианобактерий и водорослей, эффективно поглощающих свет до 750 нм.
Фотосинтез пурпурных и зеленых бактерий в этих условиях связан со способностью бактериохлорофиллов поглощать свет в красной и инфракрасной областях спектра за пределами поглощения хлорофиллов. Некоторые фотосинтезирующие эубактерии могут расти в водоемах на глубине до 20—30 м, что осуществляется за счет активности другой группы пигментов — каротиноидов. Известно, что различные лучи солнечного спектра поглощаются водой с разной интенсивностью. Глубже всего проникает свет голубой и зеленой частей спектра (450—550 нм), сильнее поглощается ультрафиолет и красный свет. Содержащиеся в клетках некоторых фототрофных эубактерии каротиноиды активно поглощают свет с длиной волны в области 460 нм, обеспечивая этим бактериям рост на значительных глубинах, куда проникает только свет этой части спектра.
В отношении к молекулярному кислороду среди фототрофных эубактерии на одном полюсе располагаются строгие анаэробы, на другом — организмы, у которых О2 образуется внутриклеточно. Многие виды — факультативные анаэробы, есть аэротолерантные формы и микроаэрофилы. У фотосинтезирующих эубактерий молекулярный кислород часто выступает как фактор, регулирующий их метаболизм: в аэробных условиях у пурпурных и зеленых бактерий репрессируется синтез фотосинтетических пигментов и тем самым уничтожается основа для фототрофного способа существования.
Значительны различия в питательных веществах, необходимых для построения веществ клетки, и донорах электронов. Диапазон — от облигатной зависимости от органических соединений, характерной для гелиобактерий и некоторых пурпурных бактерий, до способности расти на минеральной среде, свойственной цианобактериям и несимбиотическим прохлорофитам. К другим факторам внешней среды, определяющим рост фототрофных эубактерии, относятся рН, температура, концентрация солей.
Пурпурные и зеленые серобактерии, характеризующиеся близкими потребностями в факторах среды, часто сосуществуют вместе в освещенных анаэробных водных средах (пресных или соленых), богатых сульфидом. Пурпурные несерные бактерии имеют свою экологическую нишу. Как правило, они не развиваются в зонах активного роста фототрофных серобактерий.
Первый представитель зеленых нитчатых бактерий Chloroflexus aurantiacus был выделен из термального источника, где рос, формируя пленку толщиной несколько миллиметров. Позднее термофильные штаммы этого вида были найдены во многих нейтральных и щелочных горячих источниках с температурой от 45 до 75 °С, где условия, как правило, микроаэробные. Часто Chloroflexus образует смешанные популяции с некоторыми термофильными цианобактериями.
В группе цианобактерий достигнуто наибольшее среди фототрофных эубактерии приспособление к широкому диапазону внешних условий, определившее их почти повсеместное распространение. Эти организмы встречаются во льдах и горячих источниках с температурой до 70—80 °С, обитают в пресных водоемах разного типа, морях и океанах, в почвах и пустынях. Чрезмерное массовое развитие цианобактерий имеет отрицательный эффект, так как многие виды токсичны для беспозвоночных, рыб и домашних животных. Подобные явления описаны для ряда внутренних водоемов нашей страны и других стран мира.
Некоторые фототрофные эубактерии существуют в ассоциациях с другими организмами. Таковы ассоциации ряда зеленых серобактерий с хемоорганотрофными бактериями, прохлорофит с асцидиями, цианобактерий с грибами, мхами, папоротниками, водорослями, высшими растениями. Если в симбиозах один из компонентов — азотфиксирующие цианобактерий, они в первую очередь снабжают партнера связанным азотом. В других случаях конкретная природа связей между симбионтами неясна.
Фототрофные эубактерии, особенно цианобактерий, играют значительную роль в круговороте углерода и азота, а серобактерии — и серы. Сделаны определенные шаги на пути практического использования фототрофных эубактерий, например, применения азотфиксирующих цианобактерий для повышения плодородия рисовых полей, культивирования пурпурных бактерий и цианобактерий в промышленных масштабах для получения кормового белка и перспективного источника энергии — молекулярного водорода.
В научном плане фототрофные эубактерий представляют интерес для изучения механизма фотосинтеза и азотфиксации. На прокариотном уровне сформировался тип фотосинтеза, сопровождающийся выделением в атмосферу О2. С этого момента начался новый этап в эволюции жизни, решающим фактором в котором явился молекулярный кислород. Это означало существенную перестройку всего, что сформировалось на Земле в «докислородную» эпоху, и в первую очередь касалось живых организмов.
Образование О2 в возрастающих количествах сделало возможным протекание окислительных реакций в широких масштабах. Изменился характер атмосферы: из восстановительной она стала окислительной. Последнее повлекло за собой существенные изменения в отношении донор-акцепторной проблемы. Если в условиях бескислородной атмосферы доминирующим было решение проблемы акцептора электронов, то в условиях кислородной атмосферы основной становится проблема донора электронов, поскольку с появлением О2 в атмосфере Земли образовался источник превосходного акцептора электронов.
СПЕЦКУРС «ЧАСТНАЯ МИКРОБИОЛОГИЯ. СИСТЕМАТИКА МИКРООРГАНИЗМОВ»
Лекция 4.1. Явление автотрофии в микробиологии. Бактерии, окисляющие неорганические соединения. Общая характеристика, таксономия, метаболизм, роль в круговороте элементов в биосфере.
План лекции:
1. Явление автотрофии в микробиологии. Характеристика физиологических групп аэробных хемоавтотрофов
2. Нитрофицирующие бактериии.
3. Бактерии, окисляющие серу.
4. Железобактерии.
5. Водородные бактерии.
6. Метаболическая основа хемоавтотрофии.
