- •Первообразная функции. Теорема о существовании первообразной функции.
- •Определение неопределенного интеграла, его свойства, геометрический смысл.
- •Методы нахождения неопределенных интегралов. Непосредственное интегрирование.
- •Метод неопределенного интегрирования заменой переменной. Метод неопределенного интегрирования подведением под знак дифференциала.
- •Интегрирование некоторых функций, содержащих квадратный трехчлен в знаменателе
- •Интегрирование неопределенных интегралов нескольких типов по частям.
- •Интегрирование дробно-рациональных функций. Разложение на простые дроби.
- •Методы интегрирования тригонометрических функций
- •Интегрирование иррациональных функций.
- •Интегрирование иррациональных функций с помощью тригонометрических подстановок.
- •Понятие определенного интеграла. Взаимосвязь неопределенного интеграла и определенного интегралов. Формула Ньютона-Лейбница. Свойства определенного интеграла.
- •1. Постоянный множитель можно выносить за знак интеграла
- •Задачи, приводящие к понятию определенного интеграла. Геометрический смысл определенного интеграла.
- •Методы интегрирования определенных интегралов заменой переменной и по частым.
- •Несобственные интегралы с бесконечными пределами.
- •Признаки сходимости несобственных интегралов.
- •Несобственные интегралы от разрывных функций.
- •Вычисление площадей плоских фигур с помощью интегралов.
- •Вычисление объемов тел вращения с помощью интегралов.
- •Вычисление длины дуги кривой
- •Численные методы вычисления определенного интеграла. Формулы прямоугольников и трапеций. Формула Симсона для вычисления неопределенных интегралов.
- •Двойные интегралы, их геометрический смысл, свойства. Вычисление двойных интегралов.
- •Дифференциал уравнения. Основные понятия. Нахождение уравнения по его решению
- •Дифференциальное уравнение первого порядка, его геометрический смысл. Задача Коши. Теорема о существовании и единственности решения дифференциального уравнения.
- •Задача Коши.
- •Дифференциальные уравнения с разделяющимися переменными и с однородными функциями.
- •А. Уравнение с разделенными переменными Уравнением с разделенными переменными называется уравнение вида:
- •Линейные дифференциальные уравнения, решение методом замены переменной и методом вариации произвольной постоянной.
- •А. Интегрирование линейного однородного уравнения
- •Линейные дифференциальные уравнения n-го порядка, свойства их решений. Линейные дифференциальные уравнения 2-го порядка.
- •Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения.
- •Экономические приложения интегралов
- •Если покупатель приобретает товар в количестве q* по равновесной цене p*, то очевидно, что общие расходы на покупку такого товара составят p*q*, что равно площади заштрихованной фигуры a (рис.2.4).
- •Таким образом, мы получим, что суммарные затраты потребителей при покупке товара мелкими партиями d q равны:
- •Так как величина d q очень мала, а функция f(q) непрерывна, то заключаем, что приблизительно равна площади фигуры b (рис.2.6) [5].
- •Площадь фигуры b при малых приращениях аргумента d q равна определенному интегралу от обратной функции спроса при изменении аргумента от 0 до q*, т. Е. В итоге получим, что:
- •Экономические приложения дифференциальных уравнений.
1. Постоянный множитель можно выносить за знак интеграла
.
2. Интеграл от алгебраической суммы двух функций равен сумме интегралов от этих функций (верно для любого числа слагаемых):
.
3. При перемене порядка интегрирования знак определенного интеграла меняется на противоположный:
.
4. Если отрезок интегрирования разбит на части, то интеграл на всем отрезке равен сумме интегралов для каждой из возникших частей, т.е. при любых а, b и с справедливо
.
5.
Обе части неравенства можно почленно
интегрировать, т.е. если для всех
,
то
.
6.
Для
определенный интеграл
становится функцией от переменного
верхнего предела
.
Производная этой функции равна значению
подынтегральной функции в точке
:
.
7.
Теорема о среднем. Если функция
непрерывна на
,
то существует точка
такая, что
.
Значение
называется средним значением функции
на
.
у
В
А
Площадь
криволинейной трапеции
равна площади прямоугольника с основанием
и высотой, равной значению функции
в точке
.
Геометрически
теорема о среднем означает, что на
отрезке найдется такая точка, что площадь
под кривой
на этом отрезке будет равна площади
прямоугольника со сторонами
и
.
Формула Ньютона-Лейбница
Формула Ньютона-Лейбница связывает неопределенный и определенный интегралы.
Если
функция
непрерывна на
,
а функция
- одна из ее первообразных, т.е.
,
то определенный интеграл от функции
f(х) на [а, b] равен приращению первообразной
F(х) на этом отрезке, то есть
.
Эта формула сводит нахождение определенного интеграла к нахождению неопределенного интеграла.
Разность
называется приращением первообразной
и обозначается
.
Подчеркнем, что при применении формулы Ньютона-Лейбница можно использовать любую первообразную для подынтегральной функции, например, имеющую наиболее простой вид при С = 0 (в дальнейшем не будем записывать константу при нахождении неопределенного интеграла, поскольку будем считать ее равной нулю).
Пример
1. Вычислить определенный интеграл
.
Решение. По формуле Ньютона-Лейбница имеем
.
Задачи, приводящие к понятию определенного интеграла. Геометрический смысл определенного интеграла.
Геометрический смысл определенного интеграла
Понятие определенного интеграла введено таким образом, что в случае, когда функция y = f(x) неотрицательна на отрезке [a;b] и непрерывна на нем, где a < b,
численно равен площади S под кривой y = f(x) на [a; b] (рис. 3).
Рисунок. 3
Действительно,
при стремлении
к
нулю ломаная (рис. 4) неограниченно
приближается к исходной кривой и площадь
под ломаной переходит в площадь под
кривой.
Рисунок. 4
Учитывая сказанное, можно указать значения некоторых интегралов, используя известные планиметрические формулы для площадей плоских фигур. Например,
и
т.д.
(Первый из интегралов – площадь квадрата со стороной единичной длины; второй – площадь прямоугольного треугольника, оба катета которого единичной длины; третий – площадь четверти круга единичного радиуса).
