- •Первообразная функции. Теорема о существовании первообразной функции.
- •Определение неопределенного интеграла, его свойства, геометрический смысл.
- •Методы нахождения неопределенных интегралов. Непосредственное интегрирование.
- •Метод неопределенного интегрирования заменой переменной. Метод неопределенного интегрирования подведением под знак дифференциала.
- •Интегрирование некоторых функций, содержащих квадратный трехчлен в знаменателе
- •Интегрирование неопределенных интегралов нескольких типов по частям.
- •Интегрирование дробно-рациональных функций. Разложение на простые дроби.
- •Методы интегрирования тригонометрических функций
- •Интегрирование иррациональных функций.
- •Интегрирование иррациональных функций с помощью тригонометрических подстановок.
- •Понятие определенного интеграла. Взаимосвязь неопределенного интеграла и определенного интегралов. Формула Ньютона-Лейбница. Свойства определенного интеграла.
- •1. Постоянный множитель можно выносить за знак интеграла
- •Задачи, приводящие к понятию определенного интеграла. Геометрический смысл определенного интеграла.
- •Методы интегрирования определенных интегралов заменой переменной и по частым.
- •Несобственные интегралы с бесконечными пределами.
- •Признаки сходимости несобственных интегралов.
- •Несобственные интегралы от разрывных функций.
- •Вычисление площадей плоских фигур с помощью интегралов.
- •Вычисление объемов тел вращения с помощью интегралов.
- •Вычисление длины дуги кривой
- •Численные методы вычисления определенного интеграла. Формулы прямоугольников и трапеций. Формула Симсона для вычисления неопределенных интегралов.
- •Двойные интегралы, их геометрический смысл, свойства. Вычисление двойных интегралов.
- •Дифференциал уравнения. Основные понятия. Нахождение уравнения по его решению
- •Дифференциальное уравнение первого порядка, его геометрический смысл. Задача Коши. Теорема о существовании и единственности решения дифференциального уравнения.
- •Задача Коши.
- •Дифференциальные уравнения с разделяющимися переменными и с однородными функциями.
- •А. Уравнение с разделенными переменными Уравнением с разделенными переменными называется уравнение вида:
- •Линейные дифференциальные уравнения, решение методом замены переменной и методом вариации произвольной постоянной.
- •А. Интегрирование линейного однородного уравнения
- •Линейные дифференциальные уравнения n-го порядка, свойства их решений. Линейные дифференциальные уравнения 2-го порядка.
- •Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения.
- •Экономические приложения интегралов
- •Если покупатель приобретает товар в количестве q* по равновесной цене p*, то очевидно, что общие расходы на покупку такого товара составят p*q*, что равно площади заштрихованной фигуры a (рис.2.4).
- •Таким образом, мы получим, что суммарные затраты потребителей при покупке товара мелкими партиями d q равны:
- •Так как величина d q очень мала, а функция f(q) непрерывна, то заключаем, что приблизительно равна площади фигуры b (рис.2.6) [5].
- •Площадь фигуры b при малых приращениях аргумента d q равна определенному интегралу от обратной функции спроса при изменении аргумента от 0 до q*, т. Е. В итоге получим, что:
- •Экономические приложения дифференциальных уравнений.
Двойные интегралы, их геометрический смысл, свойства. Вычисление двойных интегралов.
Двойным
интегралом называют кратный интеграл
с
.
.
Здесь
—
элемент площади в рассматриваемых
координатах.
В
прямоугольных координатах:
,
где
—
элемент площади в прямоугольных
координатах.
Геометрический смысл двойного интеграла
Пусть
функция
принимает
в области
только
положительные значения. Тогда двойной
интеграл
численно
равен объему
вертикального
цилиндрического тела, построенного на
основании
и
ограниченного сверху соответствующим
куском поверхности
.
Физический смысл
Если рассматривать перемещение, то первая производная - скорость, вторая - ускорение. Соответственно, интеграл от ускорения - это скорость, двойной интеграл - перемещение. Если рассмотреть график ускорения, то двойной интеграл от него - площадь под графиком.
Область D называется правильной в направлении оси OY (ОХ), если любая прямая, параллельная оси OY(OX) и проходящая через внутреннюю точку области Д пересекает ее границу в двух точках.
Рис. 23.3
Рис. 23.4
Граница
области D, правильной в направлении оси
OY (рис. 23.3), может быть задана уравнениями
и
двойной интеграл в этом случае вычисляется
по формуле
(23.5)
причем
сначала вычисляется внутренний интеграл
в котором х считается постоянной. Выражение справа в (23.5) называется повторным, или двукратным интегралом.
Граница
области D, правильной в направлении оси
ОХ (рис. 23.4), может быть задана уравнениями:
Тогда
двойной интеграл вычисляется по формуле
(23.6)
Если область D правильная в направлении ОХ и OY (правильная область), то применимы обе формулы.
Рассмотрим геометрический смысл формулы (23.5), для формулы (23.6) рассуждения аналогичные (вывод формул приведен в [6. С. 310]).
Предположим,
что
и
граница области D является правильной
в направлении оси OY.
Из
разд. 23.1
Подсчитаем теперь объем V методом поперечных сечений (см. п.18.2.1):
(23.7)
Проводя
через т. (х,0,0) плоскость перпендикулярно
оси ОХ, получим в сечении криволинейную
трапецию
(рис.
23.5), с площадью
для
точек линии
при
постоянном х зависит только от у:
-
(23.8)
площадь поперечного сечения цилиндрического тела. Подставляя (23.8) в (23.7), получаем
Рис. 23.5
Таким образом, в формуле (23.7) слева и справа имеем объем цилиндрического тела.
Формулы (23.5) и (23.6) выведены в предположении, что область имеет специальный вид.
В общем случае область D разбивают на конечное число частей, являющихся правильными, и вычисляют для каждой из частей интеграл по формуле (23.5) или (23.6). Интеграл по всей области (свойство 3°) равен сумме полученных интегралов.
Если
область ГУ.
то
формулы (23.5) и (23.6)
примут вид
Пример:
Решение разбивается на три этапа:
1) построение области D;
2) переход к повторному интегралу, расстановка пределов интегрирован ия;
3) вычисление повторного интеграла.
Решая
систему
находим
т. пересечения параболы
и
прямой (1, 1), (-2, 4). Строим область, (-2, 4)
D
(рис. 23.6). Так как область правильная, то
можно воспользоваться формулами (23.5) и
(23.6).
При решении по (23.5) область придется разбить на две: ОВС и СВА, так как линия ОБА задается разными уравнениями:
Рис. 23.6
При
вычислении по формуле (23.6) приходим к
одному повторному интегралу
Закончим
решение, пользуясь последней формулой:
