- •1. Электрооборудование термических установок
- •1.1. Общие сведения об электротермических установках.
- •1.2. Установки печей сопротивления
- •1.4. Электрические схемы установок печей сопротивления.
- •1.5. Автоматическое регулирование печей сопротивления.
- •1.6. Индукционные электротермические установки.
- •1.7. Электрооборудование индукционных плавильных установок.
- •1.8 Индукционные нагревательные установки.
- •1.9 Закалочные установки.
- •1 .10. Электрооборудование установок электрической сварки.
- •1.10.1. Общие сведения об электросварке.
- •1 .10.2. Виды сварки плавлением
- •1.10.3. Дуговая сварка покрытыми электродами.
- •1.10.4. Дуговая сварка под флюсом.
- •1.10.5 Дуговая сварка в защитных газах.
- •1.10.6. Электрошлаковая сварка.
- •1.10.7. Плазменная сварка.
- •1.10.8. Электронно-лучевая сварка.
- •1.10.10. Газовая сварка.
- •1.10.11. Термитная сварка.
- •1.10.12. Контактная электросварка.
- •1.11. Электрическая дуга и её применение при сварке.
- •1.11.1. Природа сварочной дуги.
- •1.11.2 Условия зажигания и устойчивость горения дуги
- •1.11.3 Источники питания сварочной дуги переменного тока.
- •1.11.4 Источники питания сварочной дуги постоянного тока.
- •1.11.5 Источники питания с частотным преобразователем.
- •1.11.6 Вспомогательные устройства
- •2. Общие сведения о металлорежущих станках.
- •2.1 Классификация металлорежущих станков.
- •2.2 Основные и вспомогательные движения в станках.
- •2.3 Вопросы электропривода станков.
- •2.3.2 Выбор типа электропривода металлорежущих станков.
- •2.3.3 Регулирование скорости приводов станков
- •2.3.4 Механическое ступенчатое регулирование скорости главных приводов.
- •2.3.5 Электромеханическое регулирование скорости главных приводов.
- •2.3.6 Электрическое бесступенчатое регулирование скорости главных приводов.
- •2.3.7 Регулирование скорости приводов подач.
- •2.3.8 Режимы работы двигателей станков.
- •2.3.9 Назначение и устройство токарных станков.
- •2.3.10 Типы электроприводов токарных станков.
- •2.3.11 Расчёт мощности двигателей токарных станков.
- •2.3.12. Электропривод и схема управления токарно-винторезного станка.
- •2.4 Электрооборудование сверлильных и расточных станков.
- •2.4.1. Назначение и устройство сверлильных и расточных станков
- •2.4.2 Особенности и типы электроприводов сверлильных и расточных станков.
- •2.4.3 Расчёт мощности двигателей сверлильных и расточных станков
- •2.4.5 Электропривод и схема управления универсального расточного станка.
- •2.5 Электрооборудование фрезерных станков.
- •2.5.1 Назначение и устройство фрезерных станков
- •2.5.2. Типы электроприводов фрезерных станков.
- •2.5.3 Расчёт мощности двигателей фрезерных станков
- •2.5.4 Работа электросхемы вертикально-фрезерного станка.
- •2.6 Электрооборудование шлифовальных станков
- •2.6.1Назначение и устройство шлифовальных станков
- •2.6.2 Типы электроприводов шлифовальных станков.
- •2.6.3. Расчёт мощности двигателя главного привода шлифовальных станков.
- •2.6.4 Специальное электрооборудование шлифовальных станков
- •2.6.5 Электропривод и схема управления круглошлифовального станка
- •2.7 Электрооборудование кузнечно-прессовых машин
- •2.7.1 Назначение и устройство кузнечно-прессовых машин.
- •2.7.2 Типы электроприводов кузнечно-прессовых машин.
- •2.7.3 Расчёт двигателя механизма работающего с ударной нагрузкой
- •2.7.4 Управление электроприводами кузнечно-прессовых машин.
- •2.8.1 Назначение установок электроэрозионной обработки
- •2.8.2 Электроэрозионные станки.
- •2.8.3 Электрическая схема эрозионного станка 18м2
- •3. Электрооборудование крановых механизмов.
- •3.1. Общие сведения
- •3.2 Требования к электроприводу механизмов крана
- •3.3 Статические нагрузки двигателей механизмов кранов
- •3.4 Выбор рода тока и типа электропривода.
- •3.5 Электропривод с асинхронным двигателем механизмов подъема с магнитным контроллером.
- •3.6 Работа электрической схемы контакторного управления двигателями крановых механизмов.
- •3.8 Электрооборудование подвесных электротележек.
- •3.9 Электрооборудование и автоматизация лифтов.
- •3.9.1 Общие сведения о лифтах
- •3.9.2 Основные требования к электроприводу лифтов.
- •3.9.3 Типы электропривода и электрооборудование лифтов.
- •Расчёт нагрузок и выбор мощности двигателей лифтов.
- •3.9.5 Схема управления быстроходным пассажирским лифтом.
- •4 Электрооборудование компрессоров и вентиляторов.
- •4.1 Назначение и устройство компрессоров и вентиляторов.
- •4.2 Выбор мощности двигателей компрессоров и вентиляторов.
- •Откуда мощность на валу приводного двигателя, в кВт
- •4.3 Особенности электропривода и выбор мощности двигателей поршневых компрессоров.
- •4.4 Автоматизация работы компрессорных установок.
- •4.6 Электрическая схема автоматического управления компрессорной установкой с приводом от двух асинхронных двигателей.
- •4.6 Автоматизация работы вентиляционных установок
- •4.8.1 Назначение и устройство насосов.
- •4.8.2 Особенности электропривода и выбор мощности двигателей насосов.
- •4.8.3 Специальная аппаратура для автоматизации насосных установок.
- •5. Электрооборудование поточно-транспортных систем.
- •5.1 Общие сведения о конвейерах и поточно - транспортных системах
- •5.2 Особенности электропривода механизмов непрерывного транспорта
- •5.3 Расчёт ленточного конвейера.
- •5.3.1Производительность ленточного конвейера.
- •5.3.2 Выбор ширины ленты
- •5.3.3 Определение сопротивления при огибании лентой барабана
- •5.3.4 Определение общего тягового усилия
- •5.3.5 Определение наименьшего допускаемого натяжения
- •5.3.6 Определение натяжения ленты по точкам контура
- •5.3.7 Расчет приводного устройства
- •5.3.8 Электрическая схема управления двигателями согласованно движущихся конвейеров.
- •5.4 Электрооборудование наземных электротележек.
- •5.4.1 Электросхема и работа электротележки эт 2040
- •5.4.2 Электроштабелёры.
- •6. Проектирование электрооборудования промышленных установок, станков и машин
- •6.1 Содержание проекта электрооборудования
- •6.2 Разработка принципиальной электрической схемы
- •6.3 Размещение электрооборудования на станках и машинах
- •6.4 Выполнение схем соединений
- •6.5 Электрические проводки промышленных механизмов
- •6.6 Заземление металлических элементов электрооборудования.
- •7. Расчет проводов и кабелей.
- •7.1 Определение сечений проводов и кабелей по допустимому нагреву.
- •1). По условию нагрева длительным расчетным током
- •7.2 Защите от перегрузки подлежат сети:
- •7.3 Метод коэффициента спроса.
- •7.4 Метод упорядоченных диаграмм.
- •7 .5 Определение сечений проводов и кабелей по допустимой потере напряжения.
- •Д ля трехфазной сети с сосредоточенной нагрузкой в конце линии (мм2)
- •Для трехфазной сети с несколькими нагрузками и одинаковым сечением проводов (рис. 7.1) (мм2)
- •7.6 Выбор аппаратов защиты.
- •7.6.1 Автоматические выключатели для защиты электрооборудования механизмов, станков, машин.
- •7.6.2 Выбор автоматических выключателей.
- •7.6.3 Плавкие предохранители для защиты электрооборудования механизмов, станков, машин.
- •7.6.4 Выбор плавких предохранителей.
- •7.6.5 Тепловые реле для защиты эл.Двигателей от перегрузки.
- •7.6.6 Выбор тепловых реле.
- •7.7 Защита плавкими предохранителями питающих сетей
- •При защите двигателей ответственных механизмов ток плавкой вставки независимо от условий пуска электродвигателя
- •Средневзвешенный коэффициент использования
- •Р асчетный ток ответвления
- •8.1. Выбор мощности электродвигателей при различных режимах работы.
- •8.1.4 Повторно-кратковременная нагрузка (режим s3).
- •9.0 Способы преобразования переменного тока в постоянный
- •9.1 Выпрямители однофазного тока.
- •Действующее значение напряжения вторичной обмотки
- •9.2 Выпрямители трёхфазного тока
- •10 Расчет пусковых и тормозных устройств электродвигателей
- •10.1 Электродвигатели постоянного тока параллельного и независимого возбуждения
- •10.1.1Пусковые резисторы (сопротивления)
- •Масштаб для сопротивлений (Ом/мм)
- •Если число ступеней неизвестно, то их можно определить по формуле
- •Сопротивления секций пускового резистора
- •Пример 1
- •Решение
- •1 0.1.2 Тормозные резисторы
- •П ример 4
- •Решение
- •10.2 Асинхронные электродвигатели
- •10.2.1 Пусковые устройства
- •Пример 5
- •Решение
- •10.2.2 Двигатели с короткозамкнутым ротором.
- •10.2.1 Тормозные резисторы.
- •Решение
- •Пример 8
- •Решение
- •11. Расчет мощности и выбор трансформаторов для питания цепей управления.
- •11.1 Пример выбора номинальной мощности и предохранителя трансформатора цепи управления
- •1.1 Общие сведения об электротермических установках 1
10.2.1 Тормозные резисторы.
Динамическое торможение асинхронных двигателей подобно динамическому торможению двигателей постоянного тока и заключается в том, что статор отключается от сети постоянный ток создает в статоре неподвижное магнитное поле, в котором по инерции будет вращаться замкнутый ротор.В обмотках ротора при этом индуцируется эдс и ток, т. е. двигатель превращается в синхронный генератор с неподвижными полюсами, который обусловливает значительный тормозной момент, останавливающий двигатель. Тормозной момент зависит от тока статора, а следовательно, от подводимого напряжения постоянного тока, сопротивлений статорной и роторной цепей, частоты вращения двигателя.
Для увеличения тормозного момента в обмотку ротора вводят резистор активного сопротивления или увеличивают значение постоянного тока, включенного в цепь статора.
У электродвигателей с короткозамкнутым ротором начальные тормозные моменты малы и для повышения их приходится подавать в статор постоянный ток равный 4—5 - кратным значениям трехфазного тока холостого хода. У электродвигателей с фазным ротором постоянный ток берется равным 2—3 - кратному току холостого хода. В этом случае обеспечивается тормозной момент в пределах (1,25÷2,2) Мн.
Ток холостого хода можно определять по табл. 2.
Таблица 2. Предельно допустимые токи холостого хода электродвигателей в процентах номинального.
-
Мощность эл.
дв
Частота
вращения
электродвигателя, об/мин
двигателя
кВт
3000
1500
1000
750
500
0,1—0,5
60
75
85
90
-
0,51-1
50
70
75
80
90
1,1-5
45
65
70
75
85
5,1—10
40
60
65
70
80
10,1—25
30
55
60
65
75
25,1—50
20
50
55
60
70
50,1—100
-
40
45
50
60
Сопротивление (Ом) добавочного тормозного резистора, введенного в обмотку ротора,
Н
апряжение
постоянного тока, подводимое к обмотке
статора при различных схемах соединения
обмоток (рис. 19), определяют по формулам:
для схемы на рис. 5, a: Uп = In ·2 r1;
для схемы на рис. 5, б: Uп =1п ·3 r1;
для схемы на рис. 5, в, г: Uп=Iп ·2/3 r1;
для схемы на рис. 5, д: Uп = Iп ·1/2 r1,
где r1 — активное сопротивление фазы статора, Iп — постоянный ток.
Рис. 5. Схемы соединения обмоток статора при питании постоянным током.
Торможение противовключением асинхронного двигателя может быть получено изменением направления вращения магнитного поля двигателя путем переключения двух фаз обмотки статора или под действием активного момента от перетягивающего груза при включении в цепь ротора добавочного резистора.
В режиме противовключения двигателем из сети потребляется большое количество энергии
и протекает значительный ток. Введение резистора в цепь ротора уменьшает ток, потребляемый из сети, и изменяет тормозной момент двигателя.
Полное активное сопротивление резистора в цепи ротора для торможения противовключением
где
sпр.н
— номинальное
скольжение при противовключении;
г
де
sн
— номинальное скольжение двигателя;
Мпр — момент двигателя
при противовключении;
sпр
— скольжение двигателя при
противовключении.
Так как полное активное сопротивление в режиме противовключения Rр состоит из активного сопротивления обмотки ротора rр резистора пускового реостата Rn и резистора ступени противовключения rпр, то оно определится из выражения
Rр = rпр + Rп + rр.
Сопротивление резистора ступени противовключения rпр = Rр –Rп – rр, где Rn — сопротивление пускового резистора, rр — активное сопротивление ротора.
Пример 7
Для двигателя А 61/4, 10 кВт, 380 В, 1450 об/мин r1 = 0,587 Ом, Iн == 19,7 А, определить мощность возбуждения при динамическом торможении.
