- •Оглавление
- •Введение
- •1.Проверка на достоверность сигналов с усо
- •2.Структура алгоблока. Организация связи между алгоблоками
- •3.Программная реализация защиты по дискретному каналу
- •3.1.1 Таймер
- •3.1.2Триггер
- •3.1.3Программа защиты от «дребезга»
- •3.2.Программа защиты по дискретному каналу
- •3.3.Первая программа защиты по аналоговому каналу
- •3.3.1Конфигурационная таблица программы 1
- •3.4.Вторая программа защиты по аналоговому каналу
- •3.4.1Конфигурационная таблица программы 2
- •3.5.Оценка величины гистерезиса в нуль-органе
- •3.6.Алгоритм расчёта среднего значения в асутп
- •3.7.Защита от выброса или провала аналогового сигнала
- •3.8.Контрольные вопросы
- •4.Алгоритм простого блока мажоритарного выбора два из трёх
- •4.1.Программа простого блока мажоритарного выбора
- •5. Алгоритм мажоритарного выбора три из пяти
- •5.1.Программа
- •5.2.Конфигурационная таблица
- •6.Программа выбора исправного канала из двух каналов
- •6.1.Конфигурационная таблица
- •6.2.Контрольные вопросы
- •7.Управление по циклограмме
- •8.Алгоритм синтеза циклического управления
- •8.1.Циклограмма 1. Типовая циклограмма
- •8.2.Циклограмма 2. Управление в зависимости от параметра.
- •8.3.Циклограмма 3. Программа с повторяющимися ситуациями
- •8.4.Циклограмма 4. Задание числа циклов с лп контроллера
- •8.5.Циклограмма 5. Пуск циклограммы по команде оператора
- •8.6.Контрольные вопросы
- •9.Синтез дискретных систем управления
- •9.1.Классический алгоритм синтеза дискретного автомата
- •9.1.1Автомат с памятью и с защитой по каналам
- •9.2.Автомат с контролем последовательности ситуаций
- •9.3.Описание программы управления электрозадвижкой
- •9.4.Контрольные вопросы
- •10.Организация связи с верхним уровнем16
- •11.Управление задвижкой по циклограмме
- •12.Практические особенности реализации циклограмм
- •13.Перевод программы c языка fbd в dxf-формат
- •14.Порядок получения конфигурационной таблицы
- •15.Спецификация представленных в пособии программ
- •16.Варианты заданий
- •Литература
- •Приложение а
- •1.Элементарные функции алгебры логики
- •2.Свойства элементарных функций
- •3.Принцип двойственности
- •4. Разложение булевой функции по переменным
- •5. Полнота системы
- •5.1.Полином Жегалкина
- •5.2.Теорема Жегалкина
- •1.Минимизация булевых функций
- •1.1.Минимизация нормальных форм
- •1.2.Алгоритм Квайна построения сокращенной днф
- •1.3.Метод Блейка
- •1.4. Построение сокращенной днф с помощью кнф
- •1.5.Построение всех тупиковых днф.
- •Алгоритм минимизации функций в классе днф
- •Алгоритм минимизации функций в классе кнф
- •Алгоритм минимизации функций в классе нормальных форм
- •1.6.Минимизация частично определенных функций
- •1.7. Минимизация с использованием карт Карно
- •1.8.Код Грея
- •Приложение б Краткая биография Жегалкина и.И.
- •Приложение в Языки программирования промышленных контроллеров
- •Приложение г Имитаторы аналоговых и дискретных сигналов
- •Приложение д25 Программы для овен плк-150 и плк-154
- •Реализация дискретных систем управления на контроллерах
- •400131 Волгоград, пр. Ленина, 28, корп. 1.
- •400131, Г. Волгоград, пр. Ленина, 28, корп. 7.
1.6.Минимизация частично определенных функций
Пусть функция f(x1,…,xn) частично (не всюду) определена. Если f не определена на p наборах из 0 и 1, то существует 2p возможностей для доопределения функции f. Полностью определенная функция g (x1,…,xn) есть доопределение функции f, если g совпадает с f на тех наборах из 0 и 1, на которых f определена.
Задача минимизации частично определенной функции f сводится к отысканию такого доопределения g функции f, которое имеет простейшую (по числу букв ) минимальную форму.
Обозначим через f0(x1,…,xn) и f1(x1,…,xn) доопределения нулями и единицами соответсвенно частично определенной функции f(x1,…,xn).
Теорема. Минимальная ДНФ частично определенной функции f(x1,…,xn) есть дизъюнкция самых коротких импликант в сокращенной ДНФ доопределения f1(x1,…,xn), которые в совкупности накрывают все конституенты единицы доопределения f0(x1,…,xn).
Доказательство. Рассмотрим СДНФ некоторого доопределения g(x1,…,xn) функции f(x1,…,xn). Конституенты единицы, входящие в эту форму, войдут и в СДНФ доопределения f1. Поэтому любой простой импликант функции g будет совпадать с некоторым импликантом функции f1 или накрываться им. Самые короткие импликанты , накрывающие единицы функции f , есть импликанты функции f1. Доопределение f0 имеет минимальное количество конституент единицы в своей СДНФ , следовательно , и количество простых импликант функции f1 , потребных для накрытия этих конституент , будет наименьшим . ДНФ , составленная из самых коротких простых импликант в сокращенной ДНФ функции f1 , накрывающих все конституенты единицы функции f0 , будет самой короткой ДНФ, доопределяющей функцию f .
Так как единицы функции f1 составлены из единиц функции f и единиц на наборах , на которых f не определена , то построенная ДНФ , накрывая все единицы функции f0 ( а , следовательно , и все единицы функции f ) , совпадает с минимальной ДНФ некоторого доопределения g функции f .
Алгоритм минимизации частично определенных функций
в классе ДНФ
1. Строим СДНФ функции f0 .
2. Строим сокращенную ДНФ функции f1 .
3. С помощью матрицы покрытий коституент единицы функции f0 простыми импликантами функции f1 и решеточного выражения строим все тупиковые ДНФ (для некоторых доопределений функции f ) .
4. Среди полученных ТДНФ выбираем простейшие, они являются минимальными ДНФ ( для некоторых доопределений функции f ) .
Алгоритм минимизации частично определенных функций
в классе КНФ
Построение минимальных КНФ для частично определенной функции аналогично построению минимальных КНФ для всюду определенной функции.
Алгоритм минимизации частично определенных функций в классе нормальных форм аналогичен алгоритму минимизации в классе нормальных форм для всюду определенных функций.
Пример 1. В классе нормальных форм минимизировать частично определенную функцию f ( x, y, z, t ) = (1---010010-01--1)
Решение. Минимизируем функцию f в классе ДНФ.
1. Строим сокращенную ДНФ для доопределения единицами f1 функции f по таблице 3.9.
Таблица 3.9
x y z t |
f f0 f1 f h0 h1 |
0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 |
1 1 1 0 0 0 - 0 1 - 0 1 - 0 1 - 0 1 - 0 1 - 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 - 0 1 - 0 1 0 0 0 1 1 1 1 1 1 1 1 1 - 0 1 - 0 1 - 0 1 - 0 1 1 1 1 0 0 0 |
Строим матрицу покрытий коституент единицы в СДНФ для доопределения нулями f0 функции f с помощью построенной сокращенной ДНФ для f1 ( таблица 3.10)
Таблица 3.10
-
N
ПИ
1
+
+
2
+
3
+
+
4
+
+
5
+
6
+
3. По таблице строим решеточный многочлен
E = (24)(56)(34)(13)1 = 145 125 146 1236.
4. Строим все тупиковые ДНФ :
5. Из построенных тупиковых ДНФ выбираем минимальные :
Функции g1 и g3 есть минимальные доопределения функции f в классе ДНФ.
Минимизируем теперь функцию f в классе КНФ. Для этого проведем минимизацию функции f в классе ДНФ Пусть h0 и h1 есть доопределение нулями и единицами соответственно функции f .
Сокращенная ДНФ для
Матрица покрытия конституент единицы в СДНФ для h0 с помощью простых импликант в сокращенной ДНФ для h1 приведена в таблице 3.11.
Таблица 3.11
N |
ПИ |
|
|
|
|
|
1 |
|
|
|
|
+ |
+ |
2 |
|
|
+ |
+ |
|
|
3 |
|
|
+ |
|
|
|
4 |
|
|
|
|
+ |
|
5 |
|
+ |
+ |
|
|
|
6 |
|
|
|
|
|
+ |
3. Решеточное выражение E=5 (2 3 5) 2 (1 4)(1 6) = 25(1 46) = 125 2446.
4. Строим две тупиковые ДНФ:
и
Минимальная.
5. Функция
есть минимальное доопределение функции
f в классе КНФ.
Найденные
МДНФ g1 , g3
и МКНФ
являются минимальными доопределениями
функции f в классе
нормальных форм.
Техническая реализация минимальных форм для функции часто проще, а потому дешевле реализации ее СДНФ ( СКНФ ) . Следовательно, этап минимизации при конструировании логических схем является одним из важнейших.
